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We study stable matching problems under contingent priorities, whereby the clearinghouse prioritizes some

agents based on the allocation of others. Using school choice as a motivating example, we first introduce

a stylized model of a many-to-one matching market where the clearinghouse aims to prioritize applicants

with siblings assigned to the same school and match them together. We provide a series of guidelines to

implement these contingent priorities and introduce two novel concepts of stability that account for them.

We study some properties of the corresponding mechanisms, including the existence of a stable assignment

under contingent priorities, its incentive properties, and the complexity of finding one if it exists. Moreover,

we provide mathematical programming formulations to find such stable assignments whenever they exist.

Finally, using data from the Chilean school choice system, we show that our framework can significantly

increase the number of siblings assigned together while having no large effect on students without siblings.
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1 INTRODUCTION
The theory of two-sided many-to-one matching markets, introduced by Gale and Shapley [13],

provides a framework for solving many large-scale real-life assignment problems. Examples include

entry-level labor markets for doctors and teachers, education markets ranging from daycare and

school choice to college admissions, and other applications such as refugee resettlement.

In many of these markets, the clearinghouse may be interested in finding a stable allocation to

guarantee that no coalition of agents has incentives to circumvent thematch, while individual agents

may care about their assignment and that of other agents. For instance, in the hospital-resident

problem, couples jointly participate and must coordinate to find two positions that complement each

other. In refugee resettlement, agencies may prioritize allocating families with similar backgrounds

(e.g., from the same region or speaking the same language) to the same cities. In our primary

motivating example, school choice, students may prefer to be assigned with their siblings.

A common approach to accommodate these joint preferences is to provide priorities, such as

sibling priorities in school choice, that increase the chances of jointly allocating specific agents.
1

However, most clearinghouses assume that priorities are fixed and known before the assignment

process and thus cannot accommodate settings in which priorities depend on the current assignment.

For instance, Boston Public Schools only provide sibling priorities to applicants who have a sibling

currently enrolled for the next academic year (most clearinghouses know this by the time they

perform the allocation), but they explicitly exclude special treatment of families involving multiple

applicants (e.g., twins, triplets, or siblings applying to different grades) participating the system. As

a result, many families end up being separated, which is undesirable for multiple reasons, including

higher transportation costs, emotional distress, and logistical constraints, among others. To tackle

this issue, some school districts, such as in New York City (NYC), New Orleans (NOLA), and Wake

County Public Schools (WCPS), have introduced special treatment for multiples, whereby they

try to accommodate siblings in the same school provided some requirements (e.g., both siblings

must submit the same preference list, they must apply to the same grade/program, among others),

but they do not consider siblings applying to different grades.
2
Other school districts, such as

the Chilean school choice system, provide sibling priority to applicants if they have a sibling (i)

who is enrolled in the school for the next year or (ii) who is concurrently participating in the

admissions process and is assigned in a higher grade; nevertheless, they do not consider special

treatment of multiples nor flexibility in the direction of priorities. Hence, none of the practical

approaches mentioned above entirely solves the problem. Moreover, from a theoretical standpoint,

most definitions of stability and justified-envy assume that priorities are fixed and known, and there

are no guidelines for how to account for priorities that depend on the assignment or their potential

consequences. Thus, the theory of stable matching also fails to capture and provide solutions to

these settings.

In this paper, our primary goals are (i) to provide a conceptual framework to incorporate

contingent priorities, i.e., priorities that depend on the current assignment, and (ii) to design

methodologies to find student-optimal allocations that incorporate these priorities. To accomplish

this, we first introduce a stylized model of a many-to-one matching market where students belong

to (potentially different) grade levels and may have siblings applying to the system (potentially in

1
In refugee resettlement, families may get higher priority in localities where they have relatives based on family reunification.
This type of priority does not exist in the residency matching problems, as couples must participate together to be considered

as such, and candidates do not receive priority (at least explicitly) if their partner already works at a given hospital.

2
NYC considers special treatment of multiples in 6th grade (entry level of middle school) starting from the 2022-2023 school

year, and it also considers multiples for 3-K and Pre-K (see link for more details). NOLA uses a unique placement process

for multiples, i.e., it is not part of their assignment mechanism, and they solve it “manually”. WCPS goes one step further

and only considers feasible those assignments where multiples are assigned to the same school.

https://www.chalkbeat.org/newyork/2022/1/12/22880099/nyc-middle-school-admissions-twins-sibling-priority
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different levels). Each family reports preferences tuples of schools (one for each of their members),

while schools prioritize students with siblings (already enrolled or currently assigned) and break

ties among students in the same priority group (with or without siblings assigned/enrolled in the

school) using a random tie-breaker. Given the complexity behind reporting preferences over tuples

of schools in practice, we focus on settings where each applicant declares a preference list. The

final goal of the clearinghouse is to find a student-optimal stable assignment that incorporates

contingent priorities.

1.1 Contributions
Our work makes several contributions that we now describe in detail.

Framework. The primary contribution of our work is to introduce and formalize the notion of

contingent priorities, i.e., priorities that depend on the current assignment. To accomplish that,

we start by formalizing the distinction between static priorities, common in many school choice

systems, and contingent priorities. We then focus on the latter and provide guidelines that delimit

the implementation of contingent priorities to prevent undesirable outcomes. Namely, we assume

that students cannot provide and receive contingent priority, that the clearinghouse breaks ties

within each group using students’ random tie-breakers, and that contingent priorities can take one

of two forms: (i) Absolute, whereby a prioritized applicant can displace any other student with no

siblings assigned to the school; and (ii) Partial, whereby a prioritized applicant can only displace

another with no siblings if the tie-breaker of the sibling providing them with the priority is better

than that of the displaced student. Finally, we define the corresponding notion of justified-envy

and stability for each type of contingent priority.

Properties. We analyze several properties of the mechanism determining a student-optimal stable

matching for each variant of contingent priorities. First, we show that a stable assignment with

contingent priorities may not exist, but we also show that Partial priorities combined with lotteries

at the family level guarantees existence.
3
Nevertheless, we also show that the latter leads to the

standard notion of stability that considers no contingent priorities. In addition, we study each

mechanism’s incentive properties. For Absolute, we show that the mechanism to find a student-

optimal assignment is not strategy-proof for families under any tie-breaking rule, but we also

show that it is strategy-proof in the large. For Partial, we show that the mechanism to find a

student-optimal assignment is not strategy-proof for families under individual lotteries, while

it is strategy-proof under family lotteries. Finally, we show that the problem of finding a stable

assignment with contingent priorities is NP-complete except for the Partial case under family

lotteries, where a stable matching can be found in polynomial time.

Formulations. We provide mathematical programming formulations that enable us to either

find a stable matching for each type of contingent priorities or show infeasibility. Moreover, our

formulations are flexible enough to accommodate several practical concerns, including static

priorities and secured enrollment for students currently enrolled but looking to transfer to another

school. Finally, we introduce a novel mathematical programming formulation to find a stable

assignment that maximizes the number of siblings assigned together under the standard notion of

stability (i.e., without contingent priorities).

Impact. To illustrate the benefits of our framework, we use data from the Chilean school choice

system and compare the outcomes of using our proposed framework against sensitive benchmarks,

3Family lotteries are such that all applicants that belong to the same family get the same random tie-breaker, which may or

may not differ across schools (extending multiple and single tie-breakers, respectively).
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including the student-optimal stable matching under the standard concept of stability and the

mechanism currently used in Chile to perform the allocation. First, we empirically demonstrate

that the number of applicants with siblings participating in the system who get assigned to their

top preference significantly increases under Absolute contingent priorities all the benchmarks

considered, including the mechanism currently used in Chile and the stable matching (in the

standard sense) that maximizes the join assignment of siblings. At the same time, we observe no

large effects among students without siblings. Second, we find that Absolute leads to approximately

8.8% more applicants assigned together with their siblings relative to the mechanism currently

used in Chile. Third, we show that the standard notion of stability is unsuitable for increasing

the number of siblings assigned together, as the differences between the stable assignment that

maximizes the number of siblings allocated together and the student-optimal one are negligible.

Finally, even though we focus on school choice as a motivating example, our results and insights

may be deemed helpful in the design of matching mechanisms where priorities depend on the

assignment of others, such as in daycare assignments, college admissions, and refugee resettlement.

1.2 Organization
The remainder of this paper is organized as follows. In Section 2, we discuss the relevant literature.

In Section 3, we introduce our model. In Section 4, we discuss several properties of the mechanism

under contingent priorities. In Section 5, we provide mathematical programming formulations

to find stable assignments under contingent priorities. In Section 6, we illustrate the potential

benefits of our framework using data from the Chilean school choice system. Finally, in Section 7

we conclude.

2 LITERATURE
Our paper is related to several strands of the literature.

Matching with families. A recent strand of the literature has extended the classic school choice

model [1] to incorporate families. Dur et al. [11] consider a setting where siblings report the same

preferences, and assignments are feasible if and only if all family members are assigned to the same

school (or all of them are unassigned). The authors argue that justified envy is not an adequate

criterion for the problem. Thus, they propose a new solution concept (suitability), show that a

suitable matching always exists, and introduce a new family of strategy-proof mechanisms that

finds a suitable matching. Correa et al. [8] also consider a model with siblings applying to potentially

different grades, but assume that each sibling submits their own (potentially different) preference

list. In addition, the authors assume that the clearinghouse aims to prioritize the joint assignment

of siblings, but they model it as a soft requirement, i.e., an assignment may be feasible even if

siblings are not assigned to the same school. To prioritize the joint assignment of siblings, Correa

et al. [8] introduce (i) the use of lotteries at the family level; (ii) a heuristic that processes grades

sequentially in decreasing order, updating priorities in each step to capture siblings’ priorities

that result from the assignment of higher grades; and (iii) the option for families to report that

they prefer their siblings to be assigned to the same school rather than following their individual

reported preferences. This last feature, called family application, prioritizes the joint assignment of

siblings by updating the preferences of younger siblings by adding the school of assignment of

their older siblings. The authors show that all these features significantly increase the probability

that families get assigned together.

Matching with couples. Our paper is also related to the matching with couples literature, which

is commonly motivated by labor markets such as the matching for medical residents. In this setting,

couples wish to be matched in the same hospital and hence, they report a joint preference list of
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pairs of hospitals. For an extension of the stability concept with couples, Roth [25] shows that

a stable matching may not exist if couples participate. To overcome this limitation, Klaus and

Klijn [16] introduce the property of weak responsive preferences and show that this guarantees

the existence of a stable assignment. Kojima et al. [19] provide conditions under which a stable

matching exists with high probability in large markets, and introduce an algorithm that finds a

stable matching with high probability which is approximately strategy-proof. Ashlagi et al. [2] find

a similar result, as they show that a stable matching exists with high probability if the number of

couples grows slower than the size of the market. However, the authors also show that a stable

matching may not exist if the number of couples grows linearly. Finally, Nguyen and Vohra [22]

show that the existence of a stable matching is guaranteed if the capacity of the market is expanded

by at most a fixed number of spots to the schools.

Matching with complementarities. Beyond families and couples, the matching literature has stud-

ied other settings with complementarities. For instance, Ashlagi and Shi [4] shows that correlating

lotteries can increase community cohesion by increasing the probability of neighbors going to the

same schools. Dur and Wiseman [12] also study the matching problem with neighbors and show

that a stable matching may not exist if students have preferences over joint assignments with their

neighbors. Moreover, the authors show that the student-proposing deferred acceptance algorithm

is not strategy-proof and propose a new algorithm to address these issues. Kamada and Kojima [15]

study matching markets where the clearinghouse cares about the composition of the match and,

thus, imposes distributional constraints. The authors show that existing mechanisms suffer from

inefficiency and instability and propose a mechanism that addresses these issues while respecting

the distributional constraints. Nguyen and Vohra [23] also study the problem with distributional

concerns but consider these constraints as soft bounds and provide ex-post guarantees on how

close the constraints are satisfied while preserving stability. Nguyen et al. [21] introduce a new

model of many-to-one matching where agents with multi-unit demand maximize a cardinal linear

objective subject to multidimensional knapsack constraints, capturing settings such as refugee

resettlement, day-care matching, and school choice/college admissions with diversity concerns. The

authors show that a pairwise stable matching may not exist and provide a new algorithm that finds

a group-stable matching that approximately satisfies all the multidimensional knapsack constraints.

Finally, motivated by labor markets, Dooley and Dickerson [9] and Knittel et al. [18] study the

“affiliate matching problem”, in which firms (universities) have preferences over the applicants for

their positions but also over the placement of their own workers (job-market candidates).

3 MODEL
In this section, we introduce a two-sided matching market model that includes a priority system.

To facilitate the exposition, we use school choice with sibling priorities as a concrete application of

the model.

Let S be a finite set of students and F ⊆ 2
S
be a partition of S where 𝑓 ∈ F is called a family

and its size is denoted as |𝑓 |. For 𝑓 ∈ F with |𝑓 | ≥ 2, we say that students 𝑠 and 𝑠′ are siblings
if 𝑠, 𝑠′ ∈ 𝑓 . If 𝑓 ∈ F is such that 𝑓 = {𝑠}, then we say that 𝑠 has no siblings. With a slight abuse

of notation, we define function 𝑓 : S → F to map a student into their specific family, i.e., each

student 𝑠 ∈ S belongs to family 𝑓 (𝑠) ∈ F . Note that students 𝑠 and 𝑠′ are siblings if 𝑓 (𝑠) = 𝑓 (𝑠′).
Let C be a finite set of schools and G be the set of grade levels. With a slight abuse of notation,

we define a function 𝑔 : S → G that maps a student 𝑠 ∈ S into the grade level 𝑔(𝑠) to which they

are applying to. We denote by S𝑔 ⊆ S the set of students applying to grade level 𝑔 ∈ G, i.e., sets
S𝑔

for all 𝑔 ∈ G define a partition over S. We assume that each school 𝑐 ∈ C offers 𝑞
𝑔
𝑐 ∈ Z+ seats

on grade level 𝑔 ∈ G, where 𝑞𝑔𝑐 = 0 means that school 𝑐 does not offer grade 𝑔.
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Let E ⊆ S × C ∪ {∅} be the set of feasible pairs, i.e., (𝑠, 𝑐) ∈ E implies that student 𝑠 and school

𝑐 deem each other acceptable and 𝑞
𝑔 (𝑠 )
𝑐 > 0; ∅ represents being unassigned. A matching is an

assignment 𝜇 ⊆ E such that (i) each student is assigned to at most one school in C, and (ii) each

school is assigned at most its capacity in each grade level. Formally, for 𝜇 ⊆ E, let 𝜇 (𝑠) ∈ C ∪ {∅} be
the school that student 𝑠 was assigned to, 𝜇 (𝑓 ) ⊆ C be the subset of schools where the students of

family 𝑓 were assigned to, i.e., 𝜇 (𝑓 ) = {𝜇 (𝑠) : 𝑠 ∈ 𝑓 }, and 𝜇 (𝑐) ⊆ S be the set of students assigned

to school 𝑐 . Given a grade 𝑔 ∈ G, we denote by 𝜇𝑔 (𝑐) the set of students assigned to school 𝑐 at

grade 𝑔. Then, a matching satisfies that (i) 𝜇 (𝑠) ∈ C ∪ {∅} for all students 𝑠 ∈ S and (ii) |𝜇𝑔 (𝑐) | ≤ 𝑞
𝑔
𝑐

for all schools 𝑐 ∈ C and grade levels 𝑔 ∈ G.4
Each family 𝑓 = {𝑠1, . . . , 𝑠ℓ } ∈ F has a strict preference order ≻𝑓 over tuples in (𝐶 ∪ {∅})ℓ , which

means that (𝑐1, . . . , 𝑐ℓ ) ≻𝑓 (𝑐′
1
, . . . , 𝑐′ℓ ) implies that family 𝑓 prefers that its members 𝑠1, . . . , 𝑠ℓ go

to schools 𝑐1, . . . , 𝑐ℓ over 𝑐
′
1
, . . . , 𝑐′ℓ , respectively. On the other hand, each school 𝑐 ∈ C has a strict

preference order ≻𝑐 over feasible subsets of S, which means that for subsets 𝑆, 𝑆 ′ ⊆ S that satisfy

grade level capacities, 𝑆 ≻𝑐 𝑆
′
denotes that school 𝑐 prefers students in 𝑆 over students in 𝑆 ′.

As Roth [27] discusses, a desired property of any matching is stability, i.e., that there is no group

of agents that prefer to circumvent their current match and be matched to each other. Given a

matching 𝜇 ⊆ E, we say that student 𝑠 has justified envy towards another student 𝑠′ assigned
to school 𝑐 if (i) 𝑔(𝑠) = 𝑔(𝑠′), (ii) (𝑐, 𝜇 (𝑓 \ {𝑠})) ≻𝑓 𝜇 (𝑓 ), and (iii) (𝜇 (𝑐) ∪ {𝑠}) \ {𝑠′} ≻𝑐 𝜇 (𝑐).5 In
words, the first condition states that both students belong to the same grade level; the second

condition implies that the family prefers that 𝑠 ∈ 𝑓 is assigned to 𝑐 rather than 𝜇 (𝑠), given the

assignment of their siblings; and the third condition states that school 𝑐 prefers the set of students

that replaces 𝑠′ with 𝑠 . In addition, we say that a matching 𝜇 is non-wasteful if there is no student

𝑠 ∈ S and school 𝑐 such that (𝑐, 𝜇 (𝑓 \ {𝑠})) ≻𝑓 𝜇 (𝑓 ) and |{𝑠′ ∈ 𝜇 (𝑐) : 𝑔(𝑠′) = 𝑔(𝑠)}| < 𝑞
𝑔
𝑐 . Finally,

we say that a matching is stable if no student has justified envy and it is non-wasteful.
To account for sibling priorities, we aim to reshape the space of preferences of the schools so

that applicants with siblings enrolled or assigned in the school are prioritized. We emphasize that

“enrolled” implies that the sibling is not part of the current admissions process (i.e., not part of

the input S), while “assigned” means that the sibling is matched to a school (either temporarily

as part of an assignment mechanism or definitively as part of the output of the mechanism). In

Definition 3.1, we formalize the notion of sibling priorities and define its different types.

Definition 3.1. Sibling priorities can take one of the two following forms:

(1) Static priority: A family 𝑓 ∈ F has static priority in school 𝑐 if one or more students in 𝑓

are applying to 𝑐 and have a sibling who is currently enrolled in 𝑐 .6 Therefore, school 𝑐

prefers each student in 𝑓 over students in S with no static priority. If a student 𝑠 benefits

from static sibling priority, then we say that 𝑠 receives static sibling priority.

(2) Contingent priority: A family 𝑓 ∈ F has contingent priority in school 𝑐 if two or more

students in 𝑓 are simultaneously applying and at least one of them is assigned to 𝑐 . Therefore,

school 𝑐 prefers those students in 𝑓 over students in S with no siblings’ priority. This type

of priority is called contingent because students get prioritized only if another sibling is

assigned to the school, i.e., priorities depend on the current matching. If a student 𝑠 is

prioritized because of the siblings’ priority contingent on the assignment of their sibling 𝑠′,
we say that 𝑠 receives (𝑠′ provides) contingent sibling priority.

4
Notice that the model captures other single-level applications such as refugee resettlement, college admissions and the

hospital-resident problem.

5
With a slight abuse of notation, we compare a tuple against a set by assuming that the latter implicitly preserves the order

of the family members.

6
Recall that this means that this sibling is not part of the input S.
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We say a student has sibling priority if they provide or receive sibling priority. Note that both

types of sibling priority are school-dependent, as applicants are only prioritized in the schools

where they have siblings enrolled or assigned. Moreover, as opposed to static priorities, contingent
priorities depend on the assignment and, thus, a student may have contingent priority under some

assignments but may lose it under others (e.g., if their siblings are not assigned to the school).

Finally, a student may receive static and contingent priority in different schools or both types of

priority in the same one. For instance, suppose that a family 𝑓 = {𝑠, 𝑠′} is applying to schools 𝑐 and
𝑐′, and that 𝑠 and 𝑠′ have a sibling 𝑠′′ ∉ S currently enrolled in 𝑐 and not applying to the system. If 𝑠 ,

who receives static priority from 𝑠′′ in school 𝑐 , gets assigned to school 𝑐′ in the current matching,
7

then 𝑠′ would receive static priority in 𝑐 and contingent priority in 𝑐′. In contrast, if 𝑠 gets assigned

to 𝑐 , then 𝑠′ receives both static and contingent priority in 𝑐 . Therefore, we assume that static

priority overrules contingent priority, i.e., a student with potentially both priorities in a given

school can only benefit from the static priority.
8
In other words, students cannot double benefit if

they have siblings enrolled and also siblings currently assigned. We borrow this assumption from

practice, as in certain school districts (e.g., in Chile), the clearinghouse prefers to assign students

with static priority because their enrollment probability is higher than that of students without

siblings currently enrolled.

Given the above, in practice, these priorities define three disjoint groups of applicants in each

school: (i) students with static priority, (ii) students with contingent priority, and (iii) students

with no priority. Within each group, all students are equally preferred by the school and, thus, the

clearinghouse breaks ties using a random tie-breaker.

Note that if there are only students with no priority and families with static priorities, i.e., there

are no students who may potentially get contingent priority, then the random tie-breaker defines a

strict order over the whole set students S in each school, as the group with siblings will be always

prioritized over the group with no siblings. Thus, in this case, for any school 𝑐 ∈ C, ≻𝑐 would be as

if no student had siblings, but with the group of students with siblings’ priority placed first in the

list and then the rest.
9
This implies the following immediate corollary.

Corollary 3.2 ([13]). If there are no students who could potentially benefit from contingent priority,
then a stable matching exists.10

Since incorporating static priorities is straightforward, in the remainder of the paper, we focus

on contingent priorities to simplify the exposition. As a result, from now on, we will use siblings’

priority, contingent priority, or simply priority interchangeably. All the results can be easily

extended to account for static priorities, as we discuss in Appendix E.1. Henceforth, without loss of

generality, we consider the following assumption.

Assumption 3.1. No student has static priority in any school. Thus, in each school, the set of students
are composed by two disjoint groups of applicants: (i) students with (contingent) sibling priority, and
(ii) students with no priority.

We assume that schools break ties within each group with a random tie-breaker and we denote

by 𝑝𝑠,𝑐 ∈ R+ the value of the random tie-breaker of student 𝑠 for school 𝑐 . As opposed to static

7
This could happen if the family prefers 𝑠 to be assigned in school 𝑐′ , or it could happen if school 𝑐 is over-demanded and

all the seats are filled with students with static siblings’ priority.

8
In the example above, 𝑠′ would only have static priority.

9
In other words, the static priority and the random tie-breaking rule define a unique set ordering ≻𝑐 which translates in a

linear preference order.

10
Note that this could hold if families are of size one, but also if the preferences of siblings do not overlap, i.e., there is no

school shared by preference lists of the family members.
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priorities, the combination of contingent priorities and random tie-breakers do not define a unique

order among any two pairs of students for each school, as this pair may change from one priority

class to the other depending on the current match of their siblings. In fact, the existence of a stable

matching is not guaranteed, as shown in [8] (see their Proposition 1).

The main challenge with contingent priorities is the dependency on the current matching.
Specifically, consider a family 𝑓 = {𝑠, 𝑠′} and a matching mechanism that, at some step, matches

student 𝑠 to school 𝑐 and student 𝑠′ to some school 𝑐′ ∈ C ∪ {∅} \ {𝑐} such that (𝑐, 𝑐) ≻𝑓 (𝑐, 𝑐′).
Then, 𝑠′ has contingent priority in 𝑐 , and the mechanism would assign 𝑠′ to 𝑐 in grade level 𝑔(𝑠′),
potentially displacing another student 𝑠′′ ∉ 𝑓 without priority applying to the same grade 𝑔(𝑠′).
Given that multiple families are simultaneously applying to different schools and grade levels,

a stable matching may not exist as we previously mentioned. To address this challenge, school

districts have either (i) defined an order to process grades, and the clearinghouse updates contingent

priorities before moving to the next grade [8]; or (ii) do not consider contingent priorities. As we

discuss in Appendix C, different processing order of grade levels lead to different outcomes.

The design of contingent sibling priorities opens three immediate important questions. First,

what is an appropriate notion of stability to capture contingent priorities? Second, what are the

basic properties of a mechanism that would enable us to find such a stable assignment? And finally,

can we (efficiently) find a stable matching under contingent priorities or show that there is no such

an assignment? Our goal in the next section is to simplify the space of preferences and formalize

how siblings’ priorities affect schools’ ordering of students, so as to properly define new notions of

stability that consider contingent priorities.

3.1 Simplifying the space of preferences and priorities
The definition of justified envy in the previous section assumes that schools have preferences over

sets of students and that families have joint preferences over tuples of schools. However, in most

clearinghouses, preferences are not as complex. In practice, students typically submit individual

preferences listing schools in strict order, and schools establish their linear preferences through a

combination of random tie-breakers and priority groups. For this reason, in the remainder of the

paper, we assume a simplified structure of preferences, as formalized in Assumption 3.2.

Assumption 3.2. We assume the following structure for preferences and tie-breaking rules:
(1) On the students’ side, we assume that each family reports a strict preference order over C ∪ {∅}

for each family member participating in the admissions process.
(2) On the schools’ side, we assume that every school incorporates siblings’ priority. In addition,

we assume that ties among students belonging to the same group (i.e., students with or without
siblings assigned to the school) are broken using their random tie-breakers.

Although Assumption 3.2 simplifies the reporting of preferences, sibling priorities require addi-

tional assumptions to prevent potentially unfair assignments, as the following example illustrates.

Example 3.3. Consider an instance with a single level, a set of studentsS =
{
𝑎1, 𝑎2, 𝑎3, 𝑠1, 𝑠2, 𝑠

′
1
, 𝑠′

2

}
where 𝑓 = {𝑠1, 𝑠2} and 𝑓 ′ =

{
𝑠′

1
, 𝑠′

2

}
are siblings, and a single school 𝑐 with capacity 4. Moreover,

suppose the random-tie breakers of school 𝑐 are 𝑝𝑎1,𝑐 > 𝑝𝑎2,𝑐 > 𝑝𝑎3,𝑐 > 𝑝𝑠1,𝑐 > 𝑝𝑠2,𝑐 > 𝑝𝑠′
1
,𝑐 > 𝑝𝑠′

2
,𝑐 .

Then, one possible matching is 𝜇 =
{
(𝑎1, 𝑐), (𝑎2, 𝑐), (𝑎3, 𝑐), (𝑠1, 𝑐), (𝑠2, ∅), (𝑠′1, ∅), (𝑠′2, ∅)

}
. However,

the alternative matchings

𝜇′ =
{
(𝑎1, ∅), (𝑎2, ∅), (𝑎3, ∅), (𝑠1, 𝑐), (𝑠2, 𝑐), (𝑠′1, 𝑐), (𝑠′2, 𝑐)

}
and

𝜇′′ =
{
(𝑎1, 𝑐), (𝑎2, 𝑐), (𝑎3, ∅), (𝑠1, 𝑐), (𝑠2, 𝑐), (𝑠′1, ∅), (𝑠′2, ∅)

}
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are also feasible in terms of capacity, but depending on how siblings are prioritized over students

with no siblings, one would be more desirable than the other. □

Note that in Example 3.3, matching 𝜇′ is not desirable, since neither 𝑠′
1
nor 𝑠′

2
would be admitted

in school 𝑐 without contingent priority. This differs from the case of family 𝑓 , because there is

a matching 𝜇 that only accounts for random-tie breakers and no sibling priority in which 𝑠1 is

matched to 𝑐 and, consequently, could potentially provide contingent priority to 𝑠2. To rule out this

issue, we restrict our attention to matchings that satisfy the following assumption.

Assumption 3.3. A student cannot simultaneously provide and receive siblings’ priority in a given
school.

Note that the assignment 𝜇′′ in Example 3.3 satisfies Assumption 3.3 and, thus, is a feasible

matching with siblings’ priority. On the other hand, 𝜇′ does not satisfy this assumption, because

neither 𝑠′
1
nor 𝑠′

2
would have been assigned in 𝜇′ under the standard stability criteria. Another

key observation from Example 3.3 is that a prioritized student may displace another applicant

initially more preferred by the school according to their random tie-breakers. For instance, in 𝜇′′,
student 𝑠2 replaces 𝑎3 in school 𝑐 because of the siblings’ priority provided by 𝑠1. This outcome

may be desirable in some cases, as in some school districts (e.g., in Chile), the primary goal is

prioritizing the joint assignment of siblings. In other cases, some school districts may restrict how

much a prioritized student can displace others. For instance, a common approach used in practice

is to assume that a prioritized student moves up in the order of the school until they meet their

(highest ranked) sibling, displacing students with a random tie-breaker lower than the sibling who

provided them with their priority. To account for these two cases and provide a flexible framework,

in Definition 3.4, we introduce two types of contingent priority.

Definition 3.4. Contingent priorities can take one of two forms:

(1) Absolute when a prioritized student 𝑠 in school 𝑐 can displace any other student with no

priority, regardless of their random tie-breaker.

(2) Partial when a prioritized student 𝑠 in school 𝑐 can displace any other student with a worst

tie-breaker than the sibling providing them with the priority.

Both types of contingent priority have implications in terms of justified-envy and, consequently,

lead to different notions of stability. In the following, our goal is to formalize the concepts of

absolute and partial justified-envy. For this, let

𝑃𝜇 (𝑠, 𝑐) := max

{
𝑝𝑠′,𝑐 : (𝑠′ ∈ 𝑓 (𝑠) \ {𝑠} , 𝜇 (𝑠′) = 𝑐, 𝑠′ ≻𝑐 𝑠) or 𝑠′ = 𝑠

}
be the function that returns the highest random tie-breaker among the siblings of student 𝑠

currently assigned to 𝑐 and the tie-breaker of 𝑠 .

Definition 3.5 (Absolute justified-envy). Consider a matching 𝜇 ⊆ E.
(1) A student 𝑠 with siblings’ priority has absolute justified-envy towards another student 𝑎

assigned to school 𝑐 without siblings’ priority if (i) 𝑔(𝑠) = 𝑔(𝑎), (ii) 𝑐 ≻𝑠 𝜇 (𝑠), and (iii) there

exists a sibling 𝑠′ ∈ 𝑓 (𝑠) \ {𝑠} such that 𝜇 (𝑠′) = 𝑐 .

(2) A student 𝑠 has justified-envy towards another student 𝑎 assigned to school 𝑐 belonging to

the same group (i.e., either both or none of them have siblings assigned to 𝑐) if (i)𝑔(𝑠) = 𝑔(𝑎),
(ii) 𝑐 ≻𝑠 𝜇 (𝑠), and (iii) 𝑝𝑠,𝑐 > 𝑝𝑎,𝑐 .

Definition 3.6 (Partial justified-envy). Consider a matching 𝜇 ⊆ E.
(1) A student with sibling priority 𝑠 has partial justified-envy towards another student 𝑎 without

sibling priority assigned to school 𝑐 if (i) 𝑔(𝑠) = 𝑔(𝑎), (ii) 𝑐 ≻𝑠 𝜇 (𝑠), and (iii) 𝑃𝜇 (𝑠, 𝑐) > 𝑝𝑎,𝑐 .
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(2) A student 𝑠 has justified-envy towards another student 𝑎 assigned to school 𝑐 belonging to

the same group (i.e., either both or none of them have siblings assigned to 𝑐) if (i)𝑔(𝑠) = 𝑔(𝑎),
(ii) 𝑐 ≻𝑠 𝜇 (𝑠), and (iii) 𝑝𝑠,𝑐 > 𝑝𝑎,𝑐 .

Note that these two notions of justified-envy only differ in comparing prioritized vs. non-

prioritized students. In both cases, by Assumption 3.2 (2), the clearinghouse breaks ties among

students in the same group using their random tie-breakers. In fact, note that both notions of

justified envy, Absolute and Partial, coincide with the standard one if no student has siblings

applying in the system, as the latter is captured by the second point in each definition. Finally,

given Definitions 3.5 and 3.6, we define the corresponding notions of stability in Definition 3.7.

Definition 3.7. A matching with Absolute contingent priorities is stable if it is non-wasteful and

if no student has Absolute justified envy. Similarly, a matching with Partial contingent priorities is

stable if it is non-wasteful and if no student has Partial justified envy.

4 PROPERTIES
In this section, we discuss several properties of the proposedmechanism, including (i) the (un)existence

of stable assignments with contingent priorities, (ii) the potential multiplicity of student-optimal

assignments, (iii) the incentive properties of the mechanism, and (iv) the complexity of finding

such allocations. We defer all the proofs to Appendix A.

4.1 Existence
As discussed in [27], stability is a desirable property since it correlates with the long-term success

of the matching process. Unfortunately, as we show in Propositions 4.1 and 4.2, a stable matching

under contingent priorities may not exist.

Proposition 4.1. A stable matching with Absolute contingent priorities may not exist regardless of
the tie-breaking rule, even if families are of size at most two.

The intuition behind this result is that a cycle may appear when a student gets assigned to

some school due to the contingent priority and generates a chain of displacements that enables the

priority provider to get assigned to a more desired school, thus removing the priority. However, as

detailed in Section 6, such cycles are infrequent in practice, mitigating the concern associated with

this negative result.

In the Partial case, existence heavily depends on the tie-breaking rule. Specifically, as we show in

Proposition 4.2, a stable matching may not exist under lotteries at the individual level (i.e., where

each sibling has a different tie-breaker). In contrast, if lotteries are at the family level (i.e., each

sibling has the same tie-breaker), then a stable matching always exists.

Proposition 4.2. A stable matching with Partial priorities may not exist under tie-breaking rules
at the individual level, even if families are of size at most two and there at most two grade levels. In
contrast, a stable matching with Partial contingent priorities always exists under tie-breaking rules at
the family level. Moreover, it coincides with the stable matching in the standard sense.

4.2 Student-Optimality
Most school districts use some variant of the student-proposing Deferred Acceptance algorithm,

which is known to return the unique student-optimal stable assignment under the standard notion

of stability [13]. Moreover, the Rural Hospital Theorem [26] implies that the set of students assigned

is the same at every stable matching. As Example 4.3 illustrates, these properties do not hold under

contingent priorities.
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Example 4.3. Consider an instance with two schools C = {𝑐1, 𝑐2}, three levels G = {𝑔1, 𝑔2, 𝑔3},
two single students {𝑠, 𝑠′} applying to grade 𝑔3, two families 𝑓 = {𝑓1, 𝑓2} and 𝑓 ′ =

{
𝑓 ′
1
, 𝑓 ′

2
, 𝑓 ′

3

}
, with

students 𝑓1, 𝑓
′

1
applying to grade 𝑔1, 𝑓2, 𝑓

′
2
applying to 𝑔2, and 𝑓 ′

3
applying to 𝑔3. In addition, suppose

that preferences are:

𝑓1 : 𝑐1, 𝑓2 : 𝑐1, 𝑠 : 𝑐1 ≻ 𝑐2

𝑓 ′
1

: 𝑐1, 𝑓 ′
2

: 𝑐1, , 𝑓 ′
3

: 𝑐1, 𝑠′ : 𝑐1 ≻ 𝑐2

Finally, suppose that school 𝑐1 offers one seat in each level, that school 𝑐2 offers two seats in level

𝑔3 (and zero in all the other levels), and that the clearinghouse uses a single tie-breaking rule at the

individual level with realized random tie-breakers: 𝑝𝑠 > 𝑝𝑠′ > 𝑝 𝑓1 > 𝑝 𝑓 ′
2

> 𝑝 𝑓2 > 𝑝 𝑓 ′
1

> 𝑝 𝑓 ′
3

. In this

case, there are two stable assignments under absolute priorities:

𝜇 =
{
(𝑓1, 𝑐1), (𝑓2, 𝑐1), (𝑓 ′1 , ∅), (𝑓 ′2 , ∅), , (𝑓 ′3 , ∅), (𝑠, 𝑐1), (𝑠′, 𝑐2)

}
𝜇′ =

{
(𝑓1, ∅), (𝑓2, ∅), (𝑓 ′1 , 𝑐1), (𝑓 ′2 , 𝑐1), (𝑓 ′3 , 𝑐1), (𝑠, 𝑐2), (𝑠′, 𝑐2)

}
.

These two assignments are weakly optimal for students, as there are no other stable assignments

under absolute priorities that every student weakly prefers. Moreover, the set of students assigned

in each case (and even its cardinality) differs. □

The fact that the cardinality of the set of assigned students may differ requires a more precise basis

of comparison to evaluate different stable assignments under contingent priorities. For instance,

school districts are often required (by law) to guarantee each applicant a seat in some school, so they

may prefer assignments of maximum cardinality. In other cases, such as in Chile, the clearinghouse

may choose to maximize the number of siblings assigned together. For this reason, throughout

the remainder of this paper, we will assume that the clearinghouse aims to find a stable matching

under contingent priorities that optimizes students’ preference of assignment, assuming that being

unassigned is preferred over any school not included in the preference list. With a slight abuse of

notation, we refer to this as a student-optimal stable matching with contingent priorities.

4.3 Incentives
A desired property of any mechanism is strategy-proofness, i.e., that students have no incentive

to misreport their preferences in order to improve their allocation. Roth [24] and Dubins and

Freedman [10] show that, under the standard concept of stability, the student-proposing version of

DA is strategy-proof for students. Unfortunately, the mechanisms to find a student-optimal stable

matching under contingent priorities are not strategy-proof, as we show in Propositions 4.4 and 4.5.

Proposition 4.4. The mechanism to find a student-optimal stable matching with Absolute priorities
is not strategy-proof for the families, regardless of the tie-breaking rule.

In the Partial case, the mechanism to find a student-optimal stable assignment is not strategy-

proof under individual lotteries. However, as a Corollary of Proposition 4.2, the mechanism is

strategy-proof under family lotteries.

Proposition 4.5. The mechanism to find a student-optimal stable matching with Partial priorities
is not strategy-proof for the families under individual lotteries, but it is strategy-proof under family
lotteries.

Although strategy-proofness is desirable, the required knowledge about others’ preferences and

priorities to make a profitable deviation makes these unlikely to happen in practice. Moreover, as

we show in Proposition 4.6, the mechanism to find a stable matching under Absolute contingent

priorities is strategy-proof in the large (see Azevedo and Budish [5]), i.e., it is approximately optimal
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for students to report their true preferences for any i.i.d. distribution of students’ reports. Hence, in

large markets such as the ones motivating this work, the lack of strategy-proofness is not a major

concern.

Proposition 4.6. The mechanism to find a stable matching under Absolute priorities is strategy-
proof in the large.

4.4 Complexity
In this section, we analyze the computational complexity of finding a stable matching with con-

tingent priorities. Unfortunately, the problem of finding such an assignment is NP-complete in

the absolute case, and it is also NP-complete in the partial case under individual lotteries, as we

formalize in Theorems 4.7 and 4.8.

Theorem 4.7. The problem of determining whether a stable matching with Absolute contingent
priorities exists is NP-complete, even if the size of each family is at most three and there are at most
three grades.

Theorem 4.8. The problem of determining whether a stable matching with Partial contingent
priorities exists under individual lotteries is NP-complete, even if the size of each family is at most
three and there are at most three grades.

In contrast, the equivalence between the partial and the standard notion of stability under family

lotteries (in Proposition 4.2) implies that a stable matching with Partial priorities can be found in

polynomial time using the Deferred Acceptance algorithm in that case.

5 FORMULATIONS
The results in Section 4.4 imply that there is no hope of designing a polynomial-time approach to

finding a student-optimal stable matching with contingent priorities, unless 𝑁𝑃 = 𝑃 . This motivates

our use of integer linear programming formulations to obtain the student-optimal assignment for

each notion of stability, i.e., Absolute and Partial, which is the focus of this section.

The formulations we present in Sections 5.1 and 5.2 (for Absolute and Partial, respectively) extend

that in Baïou and Balinski [6] to find the student-optimal assignment that accounts for contingent

priorities through our notions of stability. Specifically, let 𝑟𝑠,𝑐 be the position of school 𝑐 ∈ C in

student 𝑠’s preference list, and let 𝑟𝑠,∅ be a parameter that captures the cost of having student 𝑠

unassigned. Then, it is well known that the student-optimal stable assignment corresponds to the

solution of the following integer program (for a proof see e.g. [7]):

min

∑︁
(𝑠,𝑐 ) ∈E

𝑟𝑠,𝑐 · 𝑥𝑠,𝑐 (1a)

𝑠 .𝑡 . 𝑞
𝑔 (𝑠 )
𝑐 ·

(
1 −

∑︁
𝑐′∈C:

𝑐′⪰𝑠𝑐

𝑥𝑠,𝑐′

)
≤

∑︁
𝑠′∈S𝑔 (𝑠 )

:

𝑠′≻𝑐𝑠

𝑥𝑠′,𝑐 , ∀(𝑠, 𝑐) ∈ S × C, (1b)

x ∈ P, (1c)

where

P =

x ∈ {0, 1}E :

∑︁
𝑐 :(𝑠,𝑐 ) ∈E

𝑥𝑠,𝑐 = 1, ∀ 𝑠 ∈ S,
∑︁
𝑠∈S𝑔

:

(𝑠,𝑐 ) ∈E

𝑥𝑠,𝑐 ≤ 𝑞
𝑔
𝑐 , ∀ 𝑐 ∈ C, 𝑔 ∈ G

 ,

is the set of feasible assignments, i.e., x ∈ P ensures that each student is assigned to at most

one school and that each school does not exceed their capacity in each level. The objective is to
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minimize the preference of assignment of each student and the set of constraints (1b) guarantees

that student 𝑠 has no justified-envy (in the standard sense) in school 𝑐 .11

Note that Problem (1) does not account for contingent priorities. To accomplish that, we extend

this formulation by adding a set of variables𝑦𝑠,𝑠′,𝑐 ∈ {0, 1} for all 𝑠 ∈ Swith |𝑓 (𝑠) | ≥ 2, 𝑠′ ∈ 𝑓 (𝑠)\{𝑠}
and 𝑐 ∈ {𝑐′ ∈ C : 𝑐′ ≻𝑠 ∅, 𝑐′ ≻𝑠′ ∅} (i.e., both students 𝑠 and 𝑠′ include 𝑐 in their preferences), where

𝑦𝑠,𝑠′,𝑐 is equal to 1 if student 𝑠 provides siblings priority to student 𝑠
′
in school 𝑐 , and zero otherwise.

As discussed in Section 3, a student can give contingent priority to their siblings in school 𝑐 if they

are assigned to that school and they are not receiving siblings’ priority from another sibling (by

Assumption 3.3). Thus, given an assignment x ∈ {0, 1}E , the set that captures these requirements

can be formulated as:

Q(x) =
y ∈ {0, 1}S×S×C

:

∑︁
𝑠∈ 𝑓 (𝑠′ )\{𝑠′ }

𝑦𝑠,𝑠′,𝑐 ≤ 𝑥𝑠′,𝑐 , ∀ 𝑠′ ∈ S : |𝑓 (𝑠′) | ≥ 2, 𝑐 ∈ C (2a)

∑︁
𝑠∈ 𝑓 (𝑠′ )\{𝑠′ }

𝑦𝑠′,𝑠,𝑐 ≤ |𝑓 (𝑠′) | · ©­«1 −
∑︁

𝑠∈ 𝑓 (𝑠′ )\{𝑠′ }
𝑦𝑠,𝑠′,𝑐

ª®¬ , ∀ 𝑠′ ∈ S : |𝑓 (𝑠′) | ≥ 2, 𝑐 ∈ C (2b)

𝑦𝑠′,𝑠,𝑐 ≤ 𝑥𝑠′,𝑐 , ∀ 𝑠′ ∈ S, 𝑠 ∈ 𝑓 (𝑠′) \ {𝑠′}, 𝑐 ∈ C
}
. (2c)

The set of constraints (2a) guarantees that a student 𝑠′ gets assigned to school 𝑐 if she receives

siblings’ priority in that school. The set of constraints (2b) ensures that students do not simultane-

ously provide and receive siblings’ priority. Finally, the set of constraints (2c) enforce that student

𝑠′ must be assigned to school 𝑐 to provide contingent priority to any of their siblings and to prevent

self-prioritization.

5.1 Absolute Priority
As we discuss in Definition 3.5, a student 𝑠 with siblings’ priority has absolute justified-envy towards

another student 𝑎 without siblings assigned to school 𝑐 if they belong to the same grade, 𝑠 prefers 𝑐

over their assignment and has a sibling assigned to school 𝑐 . This notion of justified-envy implies

that any student who has a sibling assigned to the school can displace any other student who does

not have siblings’ priority, regardless of their random tie-breakers. In addition, Assumption 3.2 (2)

implies that two students who have siblings assigned to the school are ordered according to their

tie-breakers.

To account for these elements, let 𝑧𝑠,𝑐 ∈ {0, 1} for (𝑠, 𝑐) ∈ S × C be a set of variables whose value

is equal to 1 if student 𝑠 provides siblings priority to a sibling in school 𝑐 , and zero otherwise. Then,

given a set of decision variables x and y as defined in the previous section, the set of variables z
can be fully characterized as follows:

R(x, y) =
{
z ∈ {0, 1}S×C

:

1

|𝑓 (𝑠) | ·
∑︁

𝑠′∈ 𝑓 (𝑠 )\{𝑠 }
𝑦𝑠,𝑠′,𝑐 ≤ 𝑧𝑠,𝑐 ≤

∑︁
𝑠′∈ 𝑓 (𝑠 )\{𝑠 }

𝑦𝑠,𝑠′,𝑐 , ∀(𝑠, 𝑐) ∈ S × C

𝑧𝑠,𝑐 ≤ 𝑥𝑠,𝑐 , ∀(𝑠, 𝑐) ∈ S × C
}
.

The left-hand side of the first set of constraints in R(x, y) guarantees that 𝑧𝑠,𝑐 is equal to 1 if there

is at least one 𝑠′ ∈ 𝑓 (𝑠) \ {𝑠} that receives siblings’ priority from student 𝑠 (note that 𝑧𝑠,𝑐 is a binary

variable so when the left-hand side is positive, then it forces 𝑧𝑠,𝑐 to be 1). The right-hand side

11
Given an assignment 𝜇, student 𝑠 has justified-envy (in the standard sense) in school 𝑐 if (i) 𝜇 (𝑠 ) ≺𝑠 𝑐 and (ii) ∃𝑠′ ∈

S𝑔 (𝑠 ) \ {𝑠 } such that 𝜇 (𝑠′ ) = 𝑐 and 𝑠 ≻𝑐 𝑠′ .



194 13

ensures that if 𝑠 is not providing priority to anyone, then 𝑧𝑠,𝑐 = 0. The second set of constraints

ensures that 𝑠 must be first assigned to 𝑐 (i.e., 𝑥𝑠,𝑐 = 1) to provide siblings’ priority in that school (i.e.,

𝑧𝑠,𝑐 = 1). Then, the problem of finding a student-optimal stable matching with absolute contingent

priority can be formulated as:

min

∑︁
(𝑠,𝑐 ) ∈E

𝑟𝑠,𝑐 · 𝑥𝑠,𝑐 (3a)

𝑠 .𝑡 . 𝑞
𝑔 (𝑠 )
𝑐 ·

(
1 −

∑︁
𝑐′∈C:

𝑐′⪰𝑠𝑐

𝑥𝑠,𝑐′

)
≤

∑︁
𝑎∈S𝑔 (𝑠 )

:

𝑎≻𝑐𝑠

𝑥𝑎,𝑐 +
∑︁
𝑓 ∈F:

| 𝑓 | ≥2

∑︁
{𝑎,𝑎′ }⊆ 𝑓 :

𝑎∈S𝑔 (𝑠 ) ,
𝑎≺𝑐𝑠

𝑦𝑎′,𝑎,𝑐 +
∑︁

𝑎∈S𝑔 (𝑠 ) :
𝑎≺𝑐𝑠

𝑧𝑎,𝑐 , ∀(𝑠, 𝑐) ∈ E, (3b)

𝑥𝑠′,𝑐 +
(
1 −

∑︁
𝑐′∈C:

𝑐′⪰𝑠𝑐

𝑥𝑠,𝑐′

)
≤ 2 − 𝑥𝑎,𝑐 + 1{𝑎≻𝑐𝑠 } ·

∑︁
𝑎′∈ 𝑓 (𝑎)\{𝑎}

(
𝑦𝑎′,𝑎,𝑐 + 𝑦𝑎,𝑎′,𝑐

)
,

∀𝑐 ∈ C, 𝑓 ∈ F , {𝑠, 𝑠′} ⊆ 𝑓 , 𝑎 ∈ S𝑔 (𝑠 ) \ 𝑓 , (3c)

x ∈ P, y ∈ Q(x), z ∈ R(x, y) . (3d)

The first set of constraints (3b) extends (1b) to incorporate absolute contingent priorities. Specifi-

cally, suppose student 𝑠 is not assigned to school 𝑐 or better. In that case, this set of constraints

implies that there are at least 𝑞
𝑔 (𝑠 )
𝑐 students assigned to school 𝑐 in level 𝑔(𝑠) which are either (i)

more preferred than student 𝑠 (first term in right-hand side), (ii) less preferred than 𝑠 but receive

siblings’ priority from one of their siblings (second term in right-hand side), or (iii) less preferred

than 𝑠 but provide siblings’ priority to their siblings (third term in right-hand side). The second set of

constraints (3c) captures how to break ties among prioritized students based on Assumption 3.2 (2).

Namely, if student 𝑠 has a sibling 𝑠′ assigned to 𝑐 (potentially in a different level) and 𝑠 is not

assigned to 𝑐 or better, then no other student 𝑎 ∈ S𝑔 (𝑠 ) \ 𝑓 (𝑠) can get assigned to 𝑐 unless their

random-tie breaker is better than that of 𝑠 and either they receive or provide siblings’ priority. Note

that these constraints also include the case when 𝑎 has no siblings which means that the sum on

the right-hand side is zero and, consequently, if 𝑠′ is assigned to 𝑐 and 𝑠 is not, then 𝑥𝑎,𝑐 is forced to

be zero.

5.2 Partial Priority
The key difference between Absolute and Partial is that, in the former case, a prioritized student

can displace any other student with no siblings assigned to the school. In the latter, in contrast,

prioritized students can only take over those who have no siblings assigned to the school, if the

maximum between their tie-breaking number and those of the siblings in the school is higher.

Equivalently, without loss of generality, a student 𝑠 with partial priority in 𝑐 can only take over

those who have no siblings assigned to the school, if the sibling 𝑠′ ∈ 𝑓 (𝑠) \{𝑠} providing priority has
the highest tie-breaker among its siblings in the school 𝑐 (note that when 𝑠 has a higher tie-break

than 𝑠′, i.e. 𝑝𝑠,𝑐 > 𝑝𝑠′,𝑐 , Assumption 3.2 (2) applies).

To capture this, we modify the set of constraints in (3b) in two important ways. First, we add

the condition 𝑎′ ≻𝑐 𝑠 in the second summation of the right-hand side to ensure that the student 𝑎′

providing the siblings’ priority has a better tie-breaker than the student 𝑠 who gets displaced by

their prioritized sibling. Second, we remove the sum over variables 𝑧’s since Partial implies that 𝑎

can no longer provide siblings priority and displace student 𝑠 as the latter is initially more preferred

by the school. Finally, we also update the set of constraints (3c) by multiplying 𝑥𝑎,𝑐 by the indicator

1{𝑎≺𝑐𝑠
′
or 𝑎≺𝑐𝑠 } , which serves two purposes:
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• If 𝑎 has no siblings assigned in 𝑐 , the summation on the right-hand side is zero and, thus,

the indicator forces 𝑥𝑎,𝑐 to be zero when 𝑎 is less preferred than 𝑠 or 𝑠′ as a result of the
Partial priority.

• If 𝑎 has siblings assigned to 𝑐 and 𝑎 ≺𝑐 𝑠 , then 𝑎 should not displace 𝑠 by Assumption 3.2 (2)

(as both 𝑎 and 𝑠 have siblings assigned to 𝑐). In this case, the summation on the right-hand

side is zero, so the indicator forces 𝑥𝑎,𝑐 to be zero.

As a result, we can formulate the problem of finding a stable assignment with Partial contingent

priorities as:

min

∑︁
(𝑠,𝑐 ) ∈V

𝑟𝑠,𝑐 · 𝑥𝑠,𝑐 (4a)

𝑠 .𝑡 . 𝑞
𝑔 (𝑠 )
𝑐 ·

(
1 −

∑︁
𝑐′∈C:

𝑐′⪰𝑠𝑐

𝑥𝑠,𝑐′

)
≤

∑︁
𝑎∈S𝑔 (𝑠 )

:

𝑎≻𝑐𝑠

𝑥𝑎,𝑐 +
∑︁
𝑓 ∈F:

| 𝑓 | ≥2

∑︁
{𝑎,𝑎′ }⊆ 𝑓 :

𝑎∈S𝑔 (𝑠 )
𝑎≺𝑐 𝑠 ≺𝑐 𝑎′

𝑦𝑎′,𝑎,𝑐 , ∀(𝑠, 𝑐) ∈ E, (4b)

𝑥𝑠′,𝑐 +
(
1 −

∑︁
𝑐′∈C:

𝑐′⪰𝑠𝑐

𝑥𝑠,𝑐′

)
≤ 2 − 𝑥𝑎,𝑐 · 1{𝑎≺𝑐𝑠

′
or 𝑎≺𝑐𝑠 } + 1{𝑎≻𝑐𝑠 } ·

∑︁
𝑎′∈ 𝑓 (𝑎)\{𝑎}

(
𝑦𝑎′,𝑎,𝑐 + 𝑦𝑎,𝑎′,𝑐

)
,

∀𝑐 ∈ C, 𝑓 ∈ F , {𝑠, 𝑠′} ⊆ 𝑓 , 𝑎 ∈ S𝑔 (𝑠 ) \ 𝑓 , (4c)

x ∈ P, y ∈ Q(x). (4d)

6 APPLICATION TO SCHOOL CHOICE IN CHILE
To illustrate the benefits of our framework, we use data from the Chilean school choice system. This

system was introduced in 2016 in the country’s southernmost region (Magallanes) and currently

serves more than half a million students across all regions and levels (i.e., from Pre-K to 12th grade).

The school choice system in Chile works as follows. On one side of the market, families report

(i) a strict preference list for each of their children participating in the system and (i) whether they

prefer the clearinghouse to assign their children to the same school over assigning them separately

to (potentially) a more preferred school according to their lists. The latter feature is known as

Family Application (FA). On the other side of the market, each school sorts students according to

five groups: (i) Students whose siblings are already enrolled for the next year (i.e., static siblings’

priority) (ii) Students whose siblings are also participating in the admission system and could

be potentially assigned to the same school (i.e., contingent siblings’ priority); (iii) Students with

parents working at the school; (iv) Former students returning to the school; (v) Students who do not

satisfy any of the former priority groups. These priorities are processed in strict order, so students

with siblings are prioritized over every other student in each school. To break ties within each

priority group, the system uses a multiple tie-breaking rule at the family level, i.e., each family gets

a random tie-breaker for each school that any of their members applies to.
12
This tie-breaker is

then used by schools to sort students within each priority group, as stated in Assumption 2. In

addition, the admission system has specific quotas for under-represented groups which we omit

here to ease the exposition.

6.1 Benchmarks
We compare our framework against the algorithm currently used to solve the Chilean school

choice problem. After collecting families’ preferences and sorting students in each school, the

12
In case that two siblings apply to the same school in the same level, the clearinghouse draws a second lottery number to

break the tie among them.
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clearinghouse runs an algorithm that processes levels in decreasing order, i.e., from the highest

(12th grade) down to the lowest (Pre-K). For each level 𝑘 , the algorithm:

(1) Updates schools’ priorities to account for the students who may benefit from having an

older sibling previously processed and assigned to the school.

(2) Updates students’ preferences to account for family applications, if any. Specifically, the

algorithm updates students’ preferences in a family application by moving up the school

where older siblings got assigned to the top of their lists. Students whose older siblings

are assigned to schools not initially listed as preferences are not given priority. Conversely,

when a student has multiple older siblings assigned to schools listed in their preferences,

the updated priority is structured in a way that places schools with older siblings assigned

at the top of the list (maintaining the rest of the original preference order). The remaining

schools are listed according to the original preferences.

(3) Runs the student-proposing Deferred Acceptance algorithm considering the updated pref-

erences and priorities among students and schools that belong to level 𝑘 .

We refer to this algorithm as Descending FA. Note that this algorithm limits sibling’s priorities

to be one-directional since only older students can provide priority to their younger siblings.

This suggests another natural benchmark which is the Ascending FA algorithm, i.e., processing

grades in ascending order starting from the lowest level. In this class of methods, we also assess

the performance of Descending and Ascending, which corresponds to the variations of the above

without FA (i.e., without step (2)).

Finally, we also compare our approaches with: (i) the student-optimal stable matching (SOSM)

output by the Deferred Acceptance algorithm (i.e., assuming no one can benefit from having

siblings) and (ii) the family-oriented stable matching (FOSM) which corresponds to the standard

stable matching that maximizes the number of family members assigned to the same school; we

include the integer linear programming formulation to obtain FOSM in Appendix D.

6.2 Data and Simulation Setting
6.2.1 Data. We use data from the admissions process in 2018 and we consider all students who

applied to the system in the the southernmost region of the country (Magallanes).
13
We focus on

this region for three reasons: (i) it is the region where all policy changes are first evaluated, (ii) it is

isolated from the rest of the country so every student that applies to local schools does not include

schools in other regions, and (iii) the composition of students and schools is representative of the

rest of the country while the size of the instance allows us to speed up computations.

In Table 1, we report summary statistics about the instance, and we compare it with the values

nationwide for the same year.
14
In addition, in Figure 1, we plot the distribution of students across

levels, highlighting in each case the number of students with siblings. Note that most of students

that participate in the system apply to one of the five entry levels (Pre-K, K, 1st, 7th, and 9th grade),

but the distribution of siblings is relatively uniform across levels.

6.2.2 Setup. To simplify the analysis and exposition of the numerical results, we only consider

two student groups out of the five explained earlier: (i) students that could benefit from contingent

sibling’s priority and (ii) the rest of the students. In other words, a student cannot benefit from, for

example, parents working at the school.

We perform our simulations considering different tie-breaking rules; namely, we consider single

and multiple tie-breakers at the individual level (STB and MTB, respectively) and at the family level

13
All the data is publicly available and can be downloaded from this website.

14
In our simulations, we consider a total of 5257 students. The difference is due to students that are not from the Magallanes

region but only apply to schools in that region.

https://datosabiertos.mineduc.cl/sistema-de-admision-escolar-sae/
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Table 1. Instance for Evaluation

Magallanes Overall

Students 5113 274990

Siblings 1300 44810

Schools 61 6421

Applications 15426 874565

Fig. 1. Students per level (Magallanes)
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(STB-F and MTB-F, respectively). In the latter case, students get the same tie-breaker as their other

siblings, and ties among siblings applying to the same school at the same level are broken with an

additional tie-breaker. In addition, for the solving of the mathematical programming formulations,

we use Gurobi
15
with a MipGap tolerance of 1%, and we use a penalty parameter for unassigned

students 𝑟𝑠,∅ = |≻𝑠 | + 1 in the formulations of Absolute priorities (3), Partial priorities (4) and

FOSM (8).
16
Finally, we perform 𝑆 = 100 simulations for each tie-breaking rule, where in each case,

we first draw the random tie-breakers and then solve each benchmark using the resulting priorities

and students’ preferences.

6.3 Results
In Figure 2, we report the distribution of the preference of assignment for students with (Figure 2a)

and without (Figure 2b) siblings participating in the admissions process. To facilitate the comparison,

we report the results considering multiple tie-breakers at the family level, and we only plot the

results for (i) Absolute, (ii) SOSM, (iii) FOSM, (iv) Descending, and (v) Descending FA. We focus

on MTB-F and Descending FA because these are the features currently used to solve the Chilean

school choice problem. Moreover, we add SOSM and Descending to isolate the effects of the

siblings’ priority and the family application,
17
and we include FOSM as an alternative approach.

We skip the results for Partial because they are equivalent to those obtained by SOSM, as shown in

Proposition 4.2. Finally, we omit students assigned to their 6th or lower preference because they

represent less than 0.5% of students across all the simulations performed.

First, we find that the problem of finding a stable assignment with Absolute and Partial contingent

priorities is feasible for all the simulations considered. Second, we observe that the number of

students assigned to their top preference is significantly larger in Absolute for students with siblings,

while it is slightly smaller for students without siblings (46.81% vs. 48.32% for Descending FA).

Third, the number of unassigned students with siblings is significantly lower in Absolute, while it

is slightly higher for students without siblings (17.47% vs. 16.28% for Descending FA). The latter

two results suggest that Absolute is effective at prioritizing students with siblings while it has no

15
www.gurobi.com

16
The results are similar if we consider 𝑟𝑠,∅ = | C | + 1, i.e., assuming large penalties for having unassigned students. As

discussed in [7], considering large penalties reduces the number of unassigned students, while considering small penalties

improves the assignment of more students.

17
Note that SOSM solves the problem without siblings’ priority or family applications. On the other hand, Descending

solves the problem sequentially in decreasing order of level, updating priorities to account for siblings assigned in higher

levels, but without updating students’ preferences as done in the algorithm with family applications.

www.gurobi.com
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Fig. 2. Preference of Assignment by Group
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(b) No siblings

1 2 3 4 5 Unassigned
Preference of Assignment

0.0

0.1

0.2

0.3

0.4

0.5

Pe
rc

en
ta

ge
 o

f S
tu

de
nt

s

Absolute
SOSM
FOSM
Desc.
Desc. FA

large effect on students without siblings. Fourth, we observe that FOSM leads to similar results than

SOSM. One potential explanation is that the core of stable assignments (in the standard sense) tends

to be small for large markets [3] and, thus, there are not many feasible solutions that prioritize

the joint assignment of families. Finally, Descending FA leads to fewer students assigned to their

top preference. The result is expected, as this algorithm distorts students’ reported preferences to

increase the number of siblings assigned together, so more students get assigned to less preferred

schools according to their original preferences.

In Table 2, we analyze the impact of the different benchmarks in the assignment of students with

siblings. The initial column (Together) provides the average number of applicants that are assigned

to the same school with at least one of their siblings. The subsequent three columns specifically

examine cases where siblings, applying to at least one school in common, ended up separated.

The column None details the average number of students for whom none of the siblings secures

an assignment. The One column presents the average number of students where one sibling gets

assigned while the other does not, and there is at least one school present in both siblings’ lists that

is more preferred than the school of the assigned one. Lastly, the Both column shows the average

number of students where both get assigned to different schools and there is a third school more

preferred by both of them.
18
As before, we focus on MTB-F and the Descending benchmarks; the

full results with all the methods and tie-breaking rules are reported in Table 3 in Appendix B.

Table 2. Effect on Siblings

Separated

Together None One Both

MTB-F

Absolute 679.19 64.57 54.28 76.39

SOSM 427.61 87.03 146.94 219.42

FOSM 428.31 88.46 146.14 219.1

Descending 526.34 84.46 107.0 156.81

Descending FA 625.81 82.73 107.77 108.58

18
Note that, in the last three cases, we may double count in cases of families with more than two applicants. Nevertheless,

only 69 out of 571 families with multiple applicants involve three or more students.
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First, we observe that Absolute leads to the highest number of siblings assigned together and,

consequently, to the lowest average number of students who got separated, could potentially

improve and get assigned together. Second, the largest difference between Absolute and Descending

FA (the second most beneficial for students with siblings) is for siblings where one is assigned

to some school while the other sibling ended up unassigned. Intuitively, the absolute contingent

priority allows studentswith low lottery numbers—whowouldmost likely end up being unassigned—

to increase substantially their chances of admission, thus decreasing the number of families with

members being unassigned. Third, we observe that FOSM improves the number of applicants

assigned with their siblings relative compared to SOSM, but only marginally.

Overall, these results suggest that absolute priorities may be a sensitive policy to prioritize

students with siblings and increase the number of them assigned together and that the standard

notion of stability (i.e., without contingent priorities) prevents from having a significant impact on

keeping families together.

7 CONCLUSIONS
Motivated by the context of school choice with sibling priorities, we study the problem of finding

a stable matching under contingent priorities, i.e., students get prioritized if they have siblings

participating in the process and who are currently assigned. We introduce a model of a matching

market where siblings may apply together to potentially different grade levels, and we define

a series of guidelines for implementing contingent priorities. Based on these, we propose two

notions of stability: (i) Absolute, whereby a prioritized student can displace any other student

without priority, and (ii) Partial, whereby a prioritized student can only displace others who have a

lower tie-breaker than the provider of the priority. In each case, we characterize properties of the

corresponding mechanism and provide mathematical programming formulations to find a stable

matching under these notions of stability (if they exist). Finally, we use data from the Chilean

school choice system to illustrate the benefits of adopting our framework.

Even though it lacks some desirable properties, such as guaranteed existence and strategy-

proofness, our results show that considering Absolute contingent priorities can significantly im-

prove the outcomes for students with siblings (e.g., preference of assignment and probability of

getting assigned together with their siblings), while it has no sizable negative effect on students

without siblings. Moreover, we find that Absolute significantly outperforms other benchmarks

specially designed to target students with siblings, such as the algorithm currently used in Chile

and the stable matching that maximizes siblings assigned together. Finally, most of the drawbacks

of our proposed approach may not be relevant in practice given the consistent existence of stable

matchings across all simulations studied and that the mechanism is strategy-proof in the large.

Therefore, clearinghouses focused on the joint assignment of siblings may largely benefit from

implementing Absolute priorities.

Our work also illustrates the importance of carefully studying different approaches to achieve a

specific outcome (e.g., increasing the number of siblings assigned together), as seemingly irrelevant

choices may play a substantial role. For instance, our results show that varying the extent to which

prioritized students can displace non-prioritized ones (i.e., Absolute vs. Partial) leads to entirely

different outcomes. Similarly, the choice of tie-breaking rule can have important effects on some

properties of the mechanism, such as the existence of a stable matching.

Finally, although we focus on school choice as a motivating example, there are many other

settings where participants may care about the assignment of others and where clearinghouses

may benefit from their joint assignment, including daycare and refugee resettlement, among others.

We believe the guidelines and insights derived from our work may help design policies to achieve

those outcomes.
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A PROOFS
A.1 Existence

Proof of Proposition 4.1. It is enough to show the result for a single tie-breaking rule at

the family level, since all the other tie-breakers can be obtained through small perturbations

of this case. Consider an instance with four schools, 𝑐1, 𝑐2, 𝑐3, and 𝑐4, and two grades, 𝑔1 and

𝑔2. School 𝑐1 has only one position at grade 𝑔2; school 𝑐2 has one position at grade 𝑔1 and one

position at grade 𝑔2; school 𝑐3 has only one position at grade 𝑔1; school 𝑐4 has one position at

grade 𝑔1 and one position at grade 𝑔2. There are four families of students, 𝑓𝑎 = {𝑎1, 𝑎2}, 𝑓𝑥 = {𝑥1},
𝑓𝑑 = {𝑑1, 𝑑2}, 𝑓ℎ = {ℎ2}. Students 𝑎1, 𝑥1, 𝑑1 apply at grade 𝑔1, and students 𝑎2, 𝑑2, ℎ2, apply at grade

𝑔2. The preferences of the families (and of each student) are the following, 𝑓𝑎 : 𝑐3 ≻ 𝑐4; 𝑓𝑥 : 𝑐2;

𝑓𝑑 : 𝑐1 ≻ 𝑐2 ≻ 𝑐3; 𝑓ℎ : 𝑐4 ≻ 𝑐1. Every school has the same tie-breaker, i.e., the following student

ordering 𝑝ℎ2,𝑐 > 𝑝𝑥1,𝑐 > 𝑝𝑑1,𝑐 > 𝑝𝑑2,𝑐 > 𝑝𝑎1,𝑐 > 𝑝𝑎2,𝑐 .

Note there is only one stable matching without sibling priority:

𝜇 = {(𝑎1, 𝑐4), (𝑎2, ∅), (𝑥1, 𝑐2), (𝑑1, 𝑐3), (𝑑2, 𝑐1), (ℎ2, 𝑐4)}.

Clearly, every other matching different from 𝜇 in which two siblings are not matched together, is

not stable. Notice that the only matchings that may be stable according to sibling priority are those

that would match 𝑎1, 𝑎2 in school 𝑐4 (𝑎1 providing priority to 𝑎2) or 𝑑1, 𝑑2 in school 𝑐2 (𝑑2 providing

priority to 𝑑1).

First, assume we have a matching where 𝑎1 provides priority to 𝑎2 in 𝑐4. The students 𝑎1, 𝑎2 both

prefer 𝑐3 over 𝑐4, so 𝑐3 must be full. But 𝑓𝑑 is the only other family that finds 𝑐3 acceptable. Suppose

𝑑1 is in 𝑐3. Then, 𝑑2 cannot be matched to 𝑐2, otherwise 𝑑1 would be matched to 𝑐2 as well via sibling

priority from 𝑑2. Therefore, 𝑑2 must be matched to 𝑐1, but then ℎ2 has justified envy towards 𝑑2 at

𝑐1.

Now assume that 𝑑1 and 𝑑2 are matched together in 𝑐2. They both prefer 𝑐1, so 𝑐1 must be full.

Thus, ℎ2 must be matched with 𝑐1. Since ℎ2 prefers 𝑐4 and has highest priority at 𝑐4, it must be the

case that both 𝑎1 and 𝑎2 are matched with 𝑐4. But this is then wasteful as 𝑐3 is unmatched and is

the first choice of family 𝑓𝑎 .

□

Proof of Proposition 4.2. We divide the proof in two parts. First, we show that a stable match-

ing may not exist under individual lotteries. Then, we show that the Partial concept of stability
coincides with the standard one if we consider family lotteries and, thus, existence is guaranteed.

Individual lotteries. There are four schools, 𝑐1, 𝑐2, 𝑐3, and 𝑐4, and two levels 𝑔1 and 𝑔2. At level 𝑔1,

schools 𝑐1 and 𝑐3 have one seat, and all the other schools have two seats. At level 𝑔2, 𝑐1 has one

seat, and all the other schools have zero seats. There are five families of students, 𝑓𝑎 = {𝑎1, 𝑎2},
𝑓𝑥 = {𝑥}, 𝑓𝑦 = {𝑦}, 𝑓𝑑 = {𝑑1, 𝑑2}, 𝑓ℎ = {ℎ1, ℎ2}. All the students, except for ℎ2, apply to level 𝑔1. The

preferences of the students (which are the same for both levels) are the following, 𝑓𝑎 : 𝑐3 ≻ 𝑐4;

𝑓𝑥 : 𝑐2; 𝑓𝑦 : 𝑐2; 𝑓𝑑 : 𝑐1 ≻ 𝑐2 ≻ 𝑐3; 𝑓ℎ : 𝑐4 ≻ 𝑐1. The random tie-breakers are the same for all schools

and lead to the following student ordering 𝑝ℎ2,𝑐 > 𝑝𝑑1,𝑐 > 𝑝𝑥,𝑐 > 𝑝𝑦,𝑐 > 𝑝𝑑2,𝑐 > 𝑝𝑎1,𝑐 > 𝑝ℎ1,𝑐 > 𝑝𝑎2,𝑐 .

Note there is only one stable matching without sibling priority:

𝜇 = {(𝑎1, 𝑐4), (𝑎2, ∅), (𝑥, 𝑐2), (𝑦, 𝑐2), (𝑑1, 𝑐1), (𝑑2, 𝑐3), (ℎ1, 𝑐4), (ℎ2, 𝑐1)}.

Clearly, every other matching different from 𝜇 in which two siblings are not matched together, is

not stable. Notice that the only matchings that may be stable according to sibling priority are those

that would match 𝑎1, 𝑎2 in school 𝑐4 (𝑎1 providing priority to 𝑎2) or 𝑑1, 𝑑2 in school 𝑐2 (𝑑1 providing

priority to 𝑑2) or ℎ1, ℎ2 in school 𝑐1 (ℎ2 providing priority to ℎ1).
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First, assume we have a matching where 𝑎1 provides priority to 𝑎2 in 𝑐4. Note that 𝑎1, 𝑎2 both

prefer 𝑐3 over 𝑐4, so 𝑐3 must be full. But 𝑓𝑑 is the only other family that finds 𝑐3 acceptable. Suppose

𝑑𝑖 (for 𝑖 = 1, 2) is in 𝑐3. Then, the other sibling in 𝑓𝑑 cannot be unmatched, otherwise both 𝑑1, 𝑑2

would prefer 𝑐2 over their current assignment, and 𝑐2, with two seats, ranks 𝑑1 second (and ℎ2 does

not rank 𝑐2). Additionally, the other sibling 𝑑 𝑗 ( 𝑗 ≠ 𝑖) cannot be matched in 𝑐2, otherwise it would

provide a priority to 𝑑𝑖 , who would prefer to be matched to 𝑐2 rather than 𝑐3. Therefore, 𝑑 𝑗 must be

matched to 𝑐1, but then ℎ1 has justified envy towards 𝑑 𝑗 at 𝑐1 since it receives priority from ℎ2.

Now assume that 𝑑1 and 𝑑2 are matched together at 𝑐2. They both prefer 𝑐1, so 𝑐1 must be full.

Thus, ℎ1 must be matched with 𝑐1. Since ℎ1 prefers 𝑐4 and has higher priority at 𝑐4 than 𝑎2 (there

are only three students that rank 𝑐4 at level 𝑔1: ℎ1, 𝑎1, 𝑎2), it must be the case that both 𝑎1 and 𝑎2 are

matched with 𝑐4. But this is then wasteful as 𝑐3 is unmatched and is the first choice of family 𝑓𝑎 .

Finally, assume that ℎ1 and ℎ2 are matched together at 𝑐1. ℎ2 can only be matched at 𝑐1, while

ℎ2 would prefer to be matched with 𝑐4. Therefore, 𝑐4 must be matched with 𝑎1, 𝑎2. But this is then

wasteful as 𝑐3 is unmatched and is the first choice of family 𝑓𝑎 .

Family lotteries. To prove the statement, we need to show that all the cases in which there is

justified envy in the Partial contingent priorities context, reduce to the classical notion of stability.

• Single applicant having justified envy towards another single applicant. This case is exactly
as in the classical notion of stability.

• Single applicant having justified envy towards a student receiving or providing sibling priority.
Let 𝑠 be the single applicant having justified envy towards a student 𝑎1. We assume that 𝑎1

receives or provides priority to a sibling 𝑎2; by assumption, all the siblings in family 𝑓 (𝑎1)
have the same lottery. Therefore, 𝑠 has a higher lottery than every sibling in family 𝑓 (𝑎1),
and, as a consequence, 𝑠 has justified envy in the classical sense.

• Student receiving (or providing) sibling priority having justified envy towards a single applicant.
Let 𝑎1 be a student having justified envy towards a student 𝑠 . We assume that 𝑎1 receives or

provides priority to a sibling 𝑎2, and all the siblings in family 𝑓 (𝑎1) have the same lottery.

Therefore, 𝑠 has a lower lottery than any sibling in family 𝑓 (𝑎1), and, as a consequence, this
means that 𝑎1 has justified envy in the classical sense.

• Student receiving (or providing) sibling priority having justified envy towards a student receiv-
ing (or providing) sibling priority. Let 𝑎1 be a student having justified envy towards a student

𝑏1. We assume that 𝑎1 receives or provides priority to a sibling 𝑎2, and all the siblings in

family 𝑓 (𝑎1) have the same lottery. We also assume that 𝑏1 receives or provides priority to

a sibling 𝑏2, and all the siblings in family 𝑓 (𝑏1) have the same lottery.Thus, under Partial

contingent priorities, 𝑎1 has a higher lottery than 𝑏1, therefore, 𝑎1 has a higher lottery

than every sibling in 𝑓 (𝑏1). As a consequence, this means that 𝑎1 has justified envy in the

classical sense.

□

A.2 Incentives
Proof of Proposition 4.4. First, note that it is enough to show the result for a single tie-

breaking rule at the family level, since we can construct examples for all the other tie-breaking

rules by simply adding a small perturbation to this counter-example.

Consider an instance of the problem with two single children 𝑠1, 𝑠2 and two families 𝑓 = {𝑓1, 𝑓2},
𝑓 ′ =

{
𝑓 ′
1
, 𝑓 ′

2

}
, with students 𝑠1, 𝑓1, 𝑓

′
1
applying to grade 𝑔1 and 𝑠2, 𝑓2, 𝑓

′
2
applying to grade 𝑔2. In

addition, suppose there are four schools C = {𝑐1, 𝑐2, 𝑐3, 𝑐4} each offering one seat in each level
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except for 𝑐2 in 𝑔1 and 𝑐3 in 𝑔2, for which 𝑞
𝑔1

𝑐2
= 𝑞

𝑔2

𝑐3
= 0. Suppose that students’ preferences are:

𝑓1 : 𝑐1 ≻ 𝑐3, 𝑓2 : 𝑐1 ≻ 𝑐2

𝑓 ′
1

: 𝑐3 ≻ 𝑐4, 𝑓 ′
2

: 𝑐3 ≻ 𝑐4

𝑠1 : 𝑐1 ≻ 𝑐2, 𝑠2 : 𝑐4 ≻ 𝑐1

Finally, the clearinghouse uses a single tie-breaker at the family level whose realized values are:

𝑝𝑠2
> 𝑝𝑠1

> 𝑝 𝑓 > 𝑝 𝑓 ′ .

Note that, if every family reports their preferences truthfully, then there is a unique student-optimal
(as defined in Section 4.2) stable matching with absolute priorities:

𝜇 =
{
(𝑠1, ∅), (𝑓1, 𝑐1), (𝑓 ′1 , 𝑐3), (𝑠2, 𝑐4), (𝑓2, 𝑐1), (𝑓 ′2 , ∅)

}
. (5)

In this case, four students get assigned to their top choice and two of them get unassigned. Note

that 𝑓 ′
2
may unilaterally improve their assignment by adding more schools to their reported list. To

see this, suppose that 𝑓 ′
2
reports the following preference order:

𝑓 ′
2

: 𝑐4 ≻ 𝑐3 ≻ 𝑐1 .

Based on these new preferences, the matching 𝜇 is no longer student-optimal as it is dominated by

the matching

𝜇′ =
{
(𝑠1, 𝑐1), (𝑓1, 𝑐3), (𝑓 ′1 , 𝑐4), (𝑠2, 𝑐1), (𝑓2, 𝑐2), (𝑓 ′2 , 𝑐4)

}
, (6)

since four students (

{
𝑓1, 𝑓

′
1
, 𝑠2, 𝑓2

}
) get assigned to their second choice, two (

{
𝑠1, 𝑓

′
2

}
) get their top

choice, and no student results unassigned. Hence, the assignment 𝜇′ leads to a strict improvement

over the objective and, thus, 𝑓 ′
2
can improve their assignment by misreporting their preferences.

□

Proof of Proposition 4.5. We first show that the mechanism is not strategy-proof under indi-

vidual lotteries. As before, it is enough to show that this is the case under single tie-breakers, as

the result for multiple tie-breakers can be obtained by adding a small perturbation to the lotteries.

Consider the same market as described in the proof of Proposition 4.4, but with a small variation

in the lotteries. Specifically, suppose that lotteries are given by:

𝑝 𝑓2 > 𝑝𝑠1
> 𝑝 𝑓1 > 𝑝 𝑓 ′

1

> 𝑝𝑠2
> 𝑝 𝑓 ′

2

.

Then, the assignment in (5) is also the only student-optimal stable matching with Partial priorities.

Moreover, as before, 𝑓 ′
2
can improve its assignment by misreporting their preferences by including

all the schools in the following order:

𝑓 ′
2

: 𝑐4 ≻ 𝑐1 ≻ 𝑐3 .

In this case, the assignment 𝜇′ in (6) that 𝑓 ′
2
strictly prefers is also feasible and leads to an overall

better assignment if the goal is to find a student-optimal matching (as defined in Section 4.2)

satisfying partial priorities.

Finally, the fact that the mechanism returning a student-optimal stable matching is strategy-proof

under family lotteries is a corollary of Proposition 4.2 and, specifically, of the equivalence between

Partial and the standard notions of stability. □

Proof of Proposition 4.6. We prove the result for the mechanism to find a stable matching

with Absolute priorities with a single tie-breaking rule. The proof for the other cases follows

similarly. Azevedo and Budish [5] show that a sufficient condition for a mechanism to be strategy-

proofness in the large is to be (i) semi-anonymous and (ii) envy-freeness but for ties (EF-TB). Hence,
it is enough to show that our mechanism satisfies these two properties.
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Semi-anonimity. As defined in [5], a mechanism is semi-anonymous if there is a partition Θ of

the set of students and, within each group 𝜃 ∈ Θ, there is a finite set of types 𝑇𝑔 that specifies the
set of possible actions for a student with that type. Specifically, if student 𝑠 belongs to group 𝜃

and 𝑡 ∈ 𝑇𝜃 is their type, then the set of possible actions that 𝑠 can take is defined as 𝐴𝜃,𝑡 ⊆ 𝐴𝜃 .

In our school choice setting, the groups are the set of students belonging to the same priority

group (e.g., students with and without siblings assigned to the school), the types are defined by

the students’ preferences ≻𝑠 , and the actions are the list of preferences that students can submit.

Then, two students 𝑠 and 𝑠′ that belong to the same group 𝜃 and share the same type 𝑡 ∈ 𝑇𝜃 , have

exactly the same preferences and priorities and differ only because of their lottery numbers. Note

that Θ has cardinality two, and that there is a finite set of preference lists ≻𝑠 that a student 𝑠 can

potentially report since the number of schools is finite. Therefore, we know that the number of

groups, the number of types, and the set of possible actions for each group and type are finite, so

the mechanism is semi-anonymous.

EF-TB. Given a market with 𝑛 students, a direct mechanism is a function Φ𝑛
: 𝑇𝑛 → Δ(𝐶 ∪{∅})𝑛

that receives a vector of types 𝑇 (the application list of each student) and returns a (potentially

randomized) feasible allocation. In addition, let 𝑢𝑡 (𝑐) be the utility that a student with type 𝑡 ∈
𝑇𝜃 , 𝜃 ∈ Θ gets from the lottery over assignments 𝑐 ∈ Δ(𝐶 ∪ {∅}) (note that, by assumption, two

students belonging to the same type have exactly the same preferences and, thus, get the same

utility in each school 𝑐 ∈ 𝐶 ∪ {∅}). Then, a semi-anonymous mechanism is envy-free but for

tie-breaking if for each 𝑛 there exists a function 𝑥𝑛 : (𝑇 × [0, 1])𝑛 → Δ(𝐶 ∪ {∅})𝑛 such that

Φ𝑛 (𝑡) =
∫
𝑙∈[0,1]𝑛

𝑥𝑛 (𝑡, 𝑙)𝑑𝑙

and, for all 𝑖, 𝑗, 𝑛, 𝑡 and 𝑙 with 𝑙𝑖 ≥ 𝑙 𝑗 , and if 𝑡𝑖 and 𝑡 𝑗 belong to the same type, then

𝑢𝑡𝑖
[
𝑥𝑛𝑖 (𝑡, 𝑙)

]
≥ 𝑢𝑡𝑖

[
𝑥𝑛𝑗 (𝑡, 𝑙)

]
.

In words, to show that our mechanism is EF-TB, we need to show that whenever two students that

belong to the same type differ in their lotteries, then the assignment of the student with the higher

lottery cannot be worse that that of the other student. This follows directly from Assumption 3.2

(2), since for each group, we know that the clearinghouse breaks ties within each group using the

tie-breaking rule. As a result, if two students 𝑠 and 𝑠′ belong to the same group, we know that the

resulting assignment 𝜇 satisfies 𝜇 (𝑠) ≻𝑠 𝜇 (𝑠′) if 𝑠 ≻𝑐 𝑠
′
for all 𝑐 ∈ 𝐶 . Then, for any function 𝑥 , it

is direct that 𝑢𝑡𝑠
[
𝑥𝑛𝑠 (𝑡, 𝑙)

]
≥ 𝑢𝑡𝑠

[
𝑥𝑛
𝑠′ (𝑡, 𝑙)

]
. Hence, we conclude that our mechanism is EF-TB, and

therefore it is strategy-proof in the large. □

A.3 Complexity
In this section, we show the complexity results in Section 4.4.

A.3.1 Absolute priorities: Proof of Theorem 4.7. In this section, we show that deciding

whether a stable matching with Absolute priorities exists is an NP-complete problem. We denote

this problem as SMAP.

First, it is easy to see that SMAP is in NP. Given a matching, we can verify both capacity

constraints and the stability definitions for all triplets consisting of two students and a school, in

polynomial-time in the input size of the SMAP instance.

It is missing to show that SMAP is NP-hard. To that end we use a reduction from a known

NP-complete problem [14, 20]. Let (3,3)-COM-SMTI be the problem of deciding whether a complete

stable matching exists, given an instance of the Stable Marriage Problem with Ties and Incomplete

lists (SMTI). For this problem, a complete stable matching is one where (i) all women and men are
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matched, (ii) there is no pair woman-man who finds each other acceptable but are unmatched, and

(iii) there is no pair woman-man who prefers to be matched together over their current matching.

This problem is shown to be NP-complete even when the following assumption holds [20]:

Assumption A.1. From the proof of NP-completeness for the (3,3)-COM-SMTI problem [20], we
can assume that the preference list of each agent is of length at most 3, every woman’s preference list
is strictly ordered, and each man’s preference list is either strictly ordered or is a tie of length 2.19

If𝑚𝑟 is a man with a strict preference list as follows:𝑤𝑟1
,𝑤𝑟2

,𝑤𝑟3
, i.e.,𝑚𝑟 ranks𝑤𝑟1

first,𝑤𝑟2
second,

and𝑤𝑟3
third, then

(1) Woman 𝑤𝑟1
finds acceptable only another man 𝑚𝑖 , where 𝑚𝑖 has a tie as a preference list.

Specifically, the preference list of woman𝑤𝑟1
is𝑚𝑖 ,𝑚𝑟 .

(2) Woman𝑤𝑟2
finds acceptable only one or two other men:𝑚𝑖 ,𝑚 𝑗 . Both men𝑚𝑖 and𝑚 𝑗 have a tie

as a preference list. Therefore, if the preference list of woman𝑤𝑟2
is of letgth 3, it is𝑚𝑖 ,𝑚𝑟 ,𝑚 𝑗 ;

otherwise, if the preference list of woman𝑤𝑟2
is of letgth 2, it is𝑚𝑖 ,𝑚𝑟 .

Next, we provide a polynomial-time reduction from an instance 𝐼 of (3,3)-COM-SMTI to an

instance 𝐼 ′ of SMAP. In the instance 𝐼 there are 𝑛 men𝑚1, . . . ,𝑚𝑛 and 𝑛 women 𝑤1, . . . ,𝑤𝑛 . As-

sumption A.1 will be crucial for proving the correctness of our reduction.

Let us now describe the reduction from instance 𝐼 into instance 𝐼 ′. On the side of the men,

we must distinguish whether a man has a strict preference list, or a preference list made of a tie.

Without loss of generality, we assume that the men with indices in the set [L]={1, . . . , 𝐿} (𝐿 ≤ 𝑛)

have a tie as a preference list, and the men with indices {𝐿 + 1, . . . , 𝑛} have a strict preference list,
where [m]={1, . . . ,𝑚} for𝑚 ∈ Z.

Let𝑚𝑖 be a man in 𝐼 with a tie of the form (𝑤𝑘 ,𝑤𝑙 ) as a preference list, where 𝑖 ∈ [𝐿]; note that
woman𝑤𝑘 is listed first in the tie, and woman𝑤𝑙 is listed second in the tie. The order of the women

in the tie is crucial for breaking the tie of the preference list in the reduced instance 𝐼 ′. For man𝑚𝑖 , we

create fourteen families of students and ten schools in 𝐼 ′. The families of students are: 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 },
𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }, 𝑓𝑒𝑖 = {𝑒𝑖1 , 𝑒𝑖2 }, 𝑓𝑏𝑖 = {𝑏𝑖1 , 𝑏𝑖3 }, 𝑓ℎ𝑖𝛼 = {ℎ𝑖𝛼,1 , ℎ𝑖𝛼,2 , ℎ𝑖𝛼,3 }, 𝑓𝑑𝑖𝛼 = {𝑑𝑖𝛼,1 , 𝑑𝑖𝛼,11

, 𝑑𝑖𝛼,2 },
𝑓𝑥𝑖𝛼 = {𝑥𝑖𝛼 }, 𝑓𝑦𝑖𝛼 = {𝑦𝑖𝛼 }, 𝑓𝑡𝑖𝛼 = {𝑡𝑖𝛼 }, 𝑓ℎ𝑖𝛽 = {ℎ𝑖𝛽,1 , ℎ𝑖𝛽,2 , ℎ𝑖𝛽,3 }, 𝑓𝑑𝑖𝛽 = {𝑑𝑖𝛽,1 , 𝑑𝑖𝛽,11

, 𝑑𝑖𝛽,2 }, 𝑓𝑥𝑖𝛽 = {𝑥𝑖𝛽 },
𝑓𝑦𝑖𝛽

= {𝑦𝑖𝛽 }, 𝑓𝑡𝑖𝛽 = {𝑡𝑖𝛽 }, where students 𝑒𝑖2 , ℎ𝑖𝛼,2 , 𝑑𝑖𝛼,2 , 𝑓𝑡𝑖𝛼 , ℎ𝑖𝛽,2 , 𝑑𝑖𝛽,2 , 𝑓𝑡𝑖𝛽 apply at grade 𝑔2, students

𝑏𝑖3 , ℎ𝑖𝛽,3 apply at grade 𝑔3, and all the other students apply at grade 𝑔1. The schools are: 𝑐𝑖1 , 𝑐𝑖2 , 𝑐𝑖𝛼,1 ,

𝑐𝑖𝛼,2 , 𝑐𝑖𝛼,3 , 𝑐𝑖𝛼,4 , 𝑐𝑖𝛽,1 , 𝑐𝑖𝛽,2 , 𝑐𝑖𝛽,3 , 𝑐𝑖𝛽,4 , where school 𝑐𝑖1 has two spots at grade 𝑔1 and one spot at grade

𝑔2; school 𝑐𝑖2 has two spots at grade 𝑔1 and one spot at grade 𝑔3; schools 𝑐𝑖𝛼,2 , 𝑐𝑖𝛼,4 , 𝑐𝑖𝛽,2 , 𝑐𝑖𝛽,4 have

each two spots at grade 𝑔1 and one spot at grade 𝑔2; schools 𝑐𝑖𝛼,1 , 𝑐𝑖𝛽,1 have each one spot at grade

𝑔1, one spot at grade 𝑔2 and one spot at grade 𝑔3; and schools 𝑐𝑖𝛼,3 , 𝑐𝑖𝛽,3 have each one spot at grade

𝑔1. The preference lists of the families and schools created from the men in instance 𝐼 are shown

in Figure 3. We assume that every student has the same preference list of their family, ranking

only the schools that offer a grade at which they apply. Note that 𝑒𝑖2 is matched with school 𝑐𝑖1 at

grade 𝑔2 in every matching; indeed, 𝑒𝑖2 is the only student acceptable at grade 𝑔2 for school 𝑐𝑖1 and

vice-versa. Similarly, 𝑏𝑖3 is matched with school 𝑐𝑖2 at grade 𝑔3 in every matching.

Now, let 𝑚𝑟 be a man in 𝐼 with a strict preference list of the form 𝑤𝑟1
,𝑤𝑟2

,𝑤𝑟3
, where 𝑟 ∈

{𝐿 + 1, . . . , 𝑛}. In instance 𝐼 ′, we create six families of students and four schools. The families

of students are 𝑓𝑠𝑟 = {𝑠𝑟1
, 𝑠𝑟2

, 𝑠𝑟3
}, 𝑓ℎ𝑖𝛾 = {ℎ𝑖𝛾,1 , ℎ𝑖𝛾,2 , ℎ𝑖𝛾,3 }, 𝑓𝑑𝑖𝛾 = {𝑑𝑖𝛾,1 , 𝑑𝑖𝛾,11

, 𝑑𝑖𝛾,2 }, 𝑓𝑥𝑖𝛾 = {𝑥𝑖𝛾 },
𝑓𝑦𝑖𝛾 = {𝑦𝑖𝛾 }, 𝑓𝑡𝑖𝛾 = {𝑡𝑖𝛾 }, where students 𝑠𝑟3

, ℎ𝑖𝛾,2 , 𝑑𝑖𝛾,2 , 𝑡𝑖𝛾 apply at grade 𝑔2, student ℎ𝑖𝛾,3 applies at

grade 𝑔3, and all the other students apply at grade 𝑔1. The new schools in 𝐼 ′ are: 𝑐𝑟𝛾,1 , 𝑐𝑟𝛾,2 , 𝑐𝑟𝛾,3 , 𝑐𝑟𝛾,4 ,
where schools 𝑐𝑟𝛾,1 has one spot at grade 𝑔1, one at grade 𝑔2 and one at grade 𝑔3, schools 𝑐𝑟𝛾,2 and

19
Note that we are reversing the roles of men and women with respect to the proof of Theorem 3.1 in [20].
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𝑐𝑟𝛾,4 have each two spots at grade 𝑔1 and one spot at grade 𝑔2, and school 𝑐𝑟𝛾,3 has one spot at grade

𝑔1.

On the side of the women, for every woman𝑤 𝑗 in 𝐼 , we create in 𝐼 ′ a school 𝑐 𝑗 of capacity 2 at

grade 𝑔1, for 𝑗 ∈ [𝑛]; moreover, if a woman𝑤 𝑗 has a preference list of length 3 and finds acceptable

a man with a strict preference list, then school 𝑐 𝑗 has an additional capacity 1 at grade 𝑔2. Next, we

describe how to build the preference list of school 𝑐 𝑗 starting from the preference list of woman

𝑤 𝑗 . Assume woman 𝑤 𝑗 ranks a man𝑚𝑖 (𝑖 ∈ [𝐿]) (i.e., 𝑤 𝑗 is listed in the tie of man𝑚𝑖 ) and 𝑤 𝑗 is

the first (second) woman listed in the tie; then, we build the preference list of school 𝑐 𝑗 from the

preference list of woman 𝑤 𝑗 by substituting man𝑚𝑖 with students {𝑠𝑖1 , 𝑠𝑖2 } ({𝑠𝑖1 , 𝑠𝑖2 }). Otherwise,
assume woman 𝑤 𝑗 ranks a man𝑚𝑟 (𝑟 ∈ {𝐿 + 1, . . . , 𝑛}); then, for building the preference list of

school 𝑐 𝑗 from the list of𝑤 𝑗 , we substitute man𝑚𝑟 with students {𝑠𝑟1
, 𝑠𝑟2

, 𝑠𝑟3
}.

Remark A.1. Given a man𝑚𝑟 with a strict preference list, student 𝑠𝑟3
applies at grade 𝑔2, and the

only school that has a spot at grade 𝑔2 is 𝑐𝑟2
, by construction.

Note also that, by Assumption A.1, woman 𝑤𝑟2
(i.e., the corresponding woman in 𝐼 of school 𝑐𝑟2

)
ranks only one man with a strict preference list. Moreover, a man𝑚𝑖 that is acceptable by 𝑤𝑟2

and
that has a tie as a preference list is reduced to families 𝑓𝑠𝑖 , 𝑓𝑠𝑖 ; these two families apply at grade 𝑔1 of
school 𝑐𝑟2

(the other families of the reduction from𝑚𝑖 do not find acceptable school 𝑐𝑟2
). Therefore, of

all the acceptable students ranked by school 𝑐𝑟2
, only student 𝑠𝑟3

applies at grade 𝑔2. As a consequence,
in every absolute contingent stable matching, student 𝑠𝑟3

and school 𝑐𝑟2
are always matched together

at grade 𝑔2. For ease of exposition, in what follows we often refer to family 𝑓𝑠𝑟 avoiding to mention
student 𝑠𝑟3

.

The reduction just described can be computed in polynomial time. Also, note that for the reduction

it is not relevant what is the tie-breaker at the family level. Next, we prove that given an instance

𝐼 of the (3,3)-COM-SMTI problem, there is a complete weakly stable matching in 𝐼 if and only if

there is a stable matching with absolute priorities in the reduced instance 𝐼 ′.

Lemma A.1. Let𝑀 ′ be a stable matching with Absolute priorities of instance 𝐼 ′ and let 𝑓 be a family
of the types 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }, 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }, and 𝑓𝑠𝑟 = {𝑠𝑟1

, 𝑠𝑟2
}, for 𝑖 ∈ [𝐿], 𝑟 ∈ {𝐿 + 1, . . . , 𝑛}. If at least

one of the members of family 𝑓 is matched to a school 𝑐 𝑗 ( 𝑗 ∈ [𝑛]) or to a school 𝑐𝑖1 , 𝑐𝑖2 (𝑖 ∈ [𝐿]), then
the siblings of family 𝑓 are matched together.

Proof. We prove our statement by contradiction, assuming that the siblings of family 𝑓 are not

matched together.

First, assume the family is 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }. Let us assume that 𝑠𝑖1 is matched to 𝑐𝑖1 . If 𝑠𝑖1 is matched

alone to 𝑐𝑖1 , then there is wastefulness since 𝑠𝑖2 would prefer to be matched to 𝑐𝑖1 since it is her

most preferred school. Otherwise, if 𝑒𝑖1 is also matched to 𝑐𝑖1 , then, 𝑏𝑖1 has justified envy towards

𝑠𝑖1 , since 𝑏𝑖1 has a better ranking than 𝑠𝑖1 at school 𝑐𝑖1 . Finally, if 𝑏𝑖1 is matched to 𝑐𝑖1 , then 𝑠𝑖2 has

justified envy towards 𝑏𝑖1 thanks to the absolute priority given by 𝑠𝑖1 . Now, let us assume that

𝑠𝑖1 is matched to 𝑐𝑘 and that 𝑠𝑖2 is matched to 𝑐𝑖𝛼,3 , or to 𝑐𝑖𝛼,4 or is unmatched. If 𝑠𝑖1 is the only

student matched to 𝑐𝑘 (recall that school 𝑐𝑘 has two positions available at grade 𝑔1), then there

is wastefulness since 𝑠𝑖2 would prefer to be matched to 𝑐𝑘 . Otherwise, assume another student 𝑎1

from another family 𝑓𝑎 = {𝑎1, 𝑎2} is matched to 𝑐𝑘 (note that only students with a sibling can be

matched to a school 𝑐𝑘 ); if 𝑓𝑠𝑖 is more preferred than 𝑓𝑎 by school 𝑐𝑘 , then by absolute priorities

𝑠𝑖2 has justified envy towards 𝑎1. Otherwise, assume 𝑓𝑎 is more preferred than 𝑓𝑠𝑖 by school 𝑐𝑘 ;

if family 𝑓𝑎 prefers 𝑐𝑘 over the current assignment of 𝑎2, then 𝑎2 has justified envy towards 𝑠𝑖1 .

Otherwise, 𝑎2 has no interest in being matched with 𝑐𝑘 and 𝑎1 is matched as an individual student

with 𝑐𝑘 ; therefore, 𝑠𝑖2 has justified envy towards 𝑎1 thanks to the absolute priority received by 𝑠𝑖1 .

The case of family 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } is similar to the one of family 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }.
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For 𝑖 ∈ [𝐿]
𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } : 𝑐𝑖1 , 𝑐𝑘 , 𝑐𝑖𝛼,3 , 𝑐𝑖𝛼,4 𝑐𝑖1 : 𝑒𝑖1 , 𝑒𝑖2 , 𝑏𝑖1 , 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } : 𝑐𝑖2 , 𝑐𝑙 , 𝑐𝑖𝛽,3 , 𝑐𝑖𝛽,4 𝑐𝑖2 : 𝑏𝑖1 , 𝑏𝑖3 , 𝑒𝑖1 , 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑒𝑖 = {𝑒𝑖1 , 𝑒𝑖2 } : 𝑐𝑖2 , 𝑐𝑖1

𝑓𝑏𝑖 = {𝑏𝑖1 , 𝑏𝑖3 } : 𝑐𝑖1 , 𝑐𝑖2

𝑓ℎ𝑖𝛼 = {ℎ𝑖𝛼,1 , ℎ𝑖𝛼,2 , ℎ𝑖𝛼,3 } : 𝑐𝑖𝛼,4 , 𝑐𝑖𝛼,1 𝑐𝑖𝛼,1 : 𝑓𝑡𝑖𝛼 , 𝑓ℎ𝑖𝛼 , 𝑓𝑥𝑖𝛼 , 𝑓𝑦𝑖𝛼 , 𝑓𝑑𝑖𝛼 , 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑑𝑖𝛼 = {𝑑𝑖𝛼,1 , 𝑑𝑖𝛼,11
, 𝑑𝑖𝛼,2 } : 𝑐𝑖𝛼,1 , 𝑐𝑖𝛼,2 , 𝑐𝑖𝛼,3 𝑐𝑖𝛼,2 : 𝑓𝑡𝑖𝛼 , 𝑓ℎ𝑖𝛼 , 𝑓𝑥𝑖𝛼 , 𝑓𝑦𝑖𝛼 , 𝑓𝑑𝑖𝛼 , 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑥𝑖𝛼 = {𝑥𝑖𝛼 } : 𝑐𝑖𝛼,2 𝑐𝑖𝛼,3 : 𝑓𝑡𝑖𝛼 , 𝑓ℎ𝑖𝛼 , 𝑓𝑥𝑖𝛼 , 𝑓𝑦𝑖𝛼 , 𝑓𝑑𝑖𝛼 , 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑦𝑖𝛼 = {𝑦𝑖𝛼 } : 𝑐𝑖𝛼,2 𝑐𝑖𝛼,4 : 𝑠𝑖1 , 𝑠𝑖2 , 𝑓𝑡𝑖𝛼 , 𝑓ℎ𝑖𝛼 , 𝑓𝑥𝑖𝛼 , 𝑓𝑦𝑖𝛼 , 𝑓𝑑𝑖𝛼

𝑓𝑡𝑖𝛼 = {𝑡𝑖𝛼 } : 𝑐𝑖𝛼,4

𝑓ℎ𝑖𝛽
= {ℎ𝑖𝛽,1 , ℎ𝑖𝛽,2 , ℎ𝑖𝛽,3 } : 𝑐𝑖𝛽,4 , 𝑐𝑖𝛽,1 𝑐𝑖𝛽,1 : 𝑓𝑡𝑖𝛽

, 𝑓ℎ𝑖𝛽
, 𝑓𝑥𝑖𝛽

, 𝑓𝑦𝑖𝛽
, 𝑓𝑑𝑖𝛽

, 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑑𝑖𝛽
= {𝑑𝑖𝛽,1 , 𝑑𝑖𝛽,11

, 𝑑𝑖𝛽,2 } : 𝑐𝑖𝛽,1 , 𝑐𝑖𝛽,2 , 𝑐𝑖𝛽,3 𝑐𝑖𝛽,2 : 𝑓𝑡𝑖𝛽
, 𝑓ℎ𝑖𝛽

, 𝑓𝑥𝑖𝛽
, 𝑓𝑦𝑖𝛽

, 𝑓𝑑𝑖𝛽
, 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑥𝑖𝛽
= {𝑥𝑖𝛽 } : 𝑐𝑖𝛽,2 𝑐𝑖𝛽,3 : 𝑓𝑡𝑖𝛽

, 𝑓ℎ𝑖𝛽
, 𝑓𝑥𝑖𝛽

, 𝑓𝑦𝑖𝛽
, 𝑓𝑑𝑖𝛽

, 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑦𝑖𝛽
= {𝑦𝑖𝛽 } : 𝑐𝑖𝛽,2 𝑐𝑖𝛽,4 : 𝑠𝑖1 , 𝑠𝑖2 , 𝑓𝑡𝑖𝛽

, 𝑓ℎ𝑖𝛽
, 𝑓𝑥𝑖𝛽

, 𝑓𝑦𝑖𝛽
, 𝑓𝑑𝑖𝛽

𝑓𝑡𝑖𝛽
= {𝑡𝑖𝛽 } : 𝑐𝑖𝛽,4

For 𝑖 = 𝐿 + 1, . . . , 𝑛

𝑓𝑠𝑟 = {𝑠𝑟1
, 𝑠𝑟2

, 𝑠𝑟3
} : 𝑐𝑟1

, 𝑐𝑟2
, 𝑐𝑟3

, 𝑐𝑟𝛾,3 , 𝑐𝑟𝛾,4

𝑓ℎ𝑟𝛾 = {ℎ𝑟𝛾,1 , ℎ𝑟𝛾,2 , ℎ𝑟𝛾,3 } : 𝑐𝑟𝛾,4 , 𝑐𝑟𝛾,1 𝑐𝑟𝛾,1 : 𝑓𝑡𝑟𝛾 , 𝑓ℎ𝑟𝛾 , 𝑓𝑥𝑟𝛾 , 𝑓𝑦𝑟𝛾 , 𝑓𝑑𝑟𝛾 , 𝑠𝑟1
, 𝑠𝑟2

𝑓𝑑𝑟𝛾 = {𝑑𝑟𝛾,1 , 𝑑𝑟𝛾,11
, 𝑑𝑟𝛾,2 } : 𝑐𝑟𝛾,1 , 𝑐𝑟𝛾,2 , 𝑐𝑟𝛾,3 𝑐𝑟𝛾,2 : 𝑓𝑡𝑟𝛾 , 𝑓ℎ𝑟𝛾 , 𝑓𝑥𝑟𝛾 , 𝑓𝑦𝑟𝛾 , 𝑓𝑑𝑟𝛾 , 𝑠𝑟1

, 𝑠𝑟2

𝑓𝑥𝑟𝛾 = {𝑥𝑟𝛾 } : 𝑐𝑟𝛾,2 𝑐𝑟𝛾,3 : 𝑓𝑡𝑟𝛾 , 𝑓ℎ𝑟𝛾 , 𝑓𝑥𝑟𝛾 , 𝑓𝑦𝑟𝛾 , 𝑓𝑑𝑟𝛾 , 𝑠𝑟1
, 𝑠𝑟2

𝑓𝑦𝑟𝛾 = {𝑦𝑟𝛾 } : 𝑐𝑟𝛾,2 𝑐𝑟𝛾,4 : 𝑠𝑟1
, 𝑠𝑟2

, 𝑓𝑡𝑟𝛾 , 𝑓ℎ𝑟𝛾 , 𝑓𝑥𝑟𝛾 , 𝑓𝑦𝑟𝛾 , 𝑓𝑑𝑟𝛾

𝑓𝑡𝑟𝛾 = {𝑡𝑟𝛾 } : 𝑐𝑟𝛾,4

Fig. 3. The preference lists of the families and schools created from the men in the original instance. Note that
schools 𝑐𝑘 , 𝑐𝑙 , 𝑐𝑟1

, 𝑐𝑟2
, 𝑐𝑟3

are the schools created each from a corresponding woman in the original instance.

Finally, let us consider the case of family 𝑓𝑠𝑟 = {𝑠𝑟1
, 𝑠𝑟2

}. Assume 𝑠𝑟1
is matched to a school 𝑐𝑟 𝑗

( 𝑗 ∈ [3]) and 𝑠𝑟2
is matched to a less preferred school. Again, if 𝑠𝑟1

is the only student matched to

𝑐𝑟 𝑗 , then there is wastefulness. Otherwise, there is another student 𝑎1 from family 𝑓𝑎 = {𝑎1, 𝑎2} that
is also matched with 𝑐𝑟 𝑗 . As we saw earlier for family 𝑓𝑠𝑖 , if 𝑓𝑠𝑟 is more preferred than 𝑓𝑎 by school

𝑐𝑟 𝑗 , then by absolute priorities 𝑠𝑟2
has justified envy towards 𝑎1. In the case in which 𝑓𝑎 is more

preferred than 𝑓𝑠𝑟 by school 𝑐𝑟 𝑗 , then we fall again in contradictions. □
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Lemma A.2. Let𝑀 ′ be a stable matching with Absolute priorities of instance 𝐼 ′ and let 𝑓 be a family
of the types 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }, 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }, and 𝑓𝑠𝑟 = {𝑠𝑟1

, 𝑠𝑟2
} for 𝑖 ∈ [𝐿] and 𝑟 ∈ {𝐿 + 1, . . . , 𝑛}. Then,

family 𝑓 is matched to a school 𝑐 𝑗 ( 𝑗 ∈ [𝑛]) or to a school 𝑐𝑖1 , 𝑐𝑖2 (𝑖 ∈ [𝐿]). In particular, none of the
siblings of family 𝑓 are matched to a school of the type 𝑐𝑞𝛿,𝑘 where 𝑞 ∈ [𝑛], 𝛿 ∈ {𝛼, 𝛽,𝛾}, 𝑘 ∈ [4].

Proof. First, we show that family 𝑓𝑠𝑟 = {𝑠𝑟1
, 𝑠𝑟2

} cannot be matched to any school of the type

𝑐𝑟𝛾,𝑘 where 𝑟 ∈ {𝐿 + 1, . . . , 𝑛}, and 𝑘 ∈ [4]. Assume neither 𝑠𝑟1
nor 𝑠𝑟2

are matched to a school

𝑐𝑟1
, 𝑐𝑟2

, 𝑐𝑟3
. Then, there is only one stable matching without sibling priority, where the schools 𝑐𝑟𝛾,𝑘

for 𝑘 ∈ [4] and the students whom deem them acceptable are matched as follows:

𝜇 = {(𝑠𝑟1
, 𝑐𝑟𝛾,4 ), (𝑠𝑟2

, 𝑐𝑟𝛾,4 ), (𝑡𝑟𝛾 , 𝑐𝑟𝛾,4 ), (𝑥𝑟𝛾 , 𝑐𝑟𝛾,2 ), (𝑦𝑟𝛾 , 𝑐𝑟𝛾,2 ), (𝑑𝑟𝛾,2 , 𝑐𝑟𝛾,2 ),
(𝑑𝑟𝛾,1 , 𝑐𝑟𝛾,3 ), (𝑑𝑟𝛾,11

, ∅), (ℎ𝑟𝛾,1 , 𝑐𝑟𝛾,1 ), (ℎ𝑟𝛾,2 , 𝑐𝑟𝛾,1 ), (ℎ𝑟𝛾,3 , 𝑐𝑟𝛾,1 )}.

Clearly, every other matching for those schools and students different from 𝜇 in which two siblings

are notmatched together, is not stable (evenwith Absolute priorities). Notice that the onlymatchings

that may be stable according to sibling priority are those that would match i) 𝑠𝑟1
, 𝑠𝑟2

in school 𝑐𝑟𝛾,4
or ii) ℎ𝑟𝛾,1 , ℎ𝑟𝛾,2 , ℎ𝑟𝛾,3 in school 𝑐𝑟𝛾,1 , or iii) ℎ𝑟𝛾,1 , ℎ𝑟𝛾,2 in school 𝑐𝑟𝛾,4 , or iv) 𝑑𝑟𝛾,1 , 𝑑𝑟𝛾,11

, 𝑑𝑟𝛾,2 in school 𝑐𝑟𝛾,2 ,

or v) 𝑑𝑟𝛾,1 , 𝑑𝑟𝛾,2 in school 𝑐𝑟𝛾,1 . Next, we analyze each of these 5 cases.

(i) Assume we have a matching where 𝑠𝑟1
provides priority to 𝑠𝑟1

in 𝑐𝑟𝛾,4 . Students 𝑠𝑟1
, 𝑠𝑟2

both

prefer 𝑐𝑟𝛾,3 over 𝑐𝑟𝛾,4 , so 𝑐𝑟𝛾,3 must be full. But 𝑓𝑟𝛾𝑑
is the only other family that finds 𝑐𝑟𝛾,3

acceptable. Suppose 𝑑𝑟𝛾,11
is in 𝑐𝑟𝛾,3 . If 𝑑𝑟𝛾,2 or 𝑑𝑟𝛾,1 is in 𝑐𝑟𝛾,2 , then 𝑑𝑟𝛾,11

would receive absolute

priority to be matched to 𝑐𝑟𝛾,2 over their current assignment. If, instead, 𝑑𝑟𝛾,2 or 𝑑𝑟𝛾,1 is in

𝑐𝑟𝛾,2 , then ℎ𝑟𝛾,2 or ℎ𝑟𝛾,1 would have (absolute) justified envy, respectively (since ℎ𝑟𝛾,3 provides

priority).

(ii) Assume ℎ𝑟𝛾,1 , ℎ𝑟𝛾,2 , ℎ𝑟𝛾,3 are matched in school 𝑐𝑟𝛾,1 . Then 𝑑𝑟𝛾,2 can only be matched to school

𝑐𝑟𝛾,2 , thus providing priority to the siblings 𝑑𝑟𝛾,2 and 𝑑𝑟𝛾,1 . Hence, there is an empty spot in

school 𝑐𝑟𝛾,3 which will be filled by one of the two students 𝑠𝑟1
, 𝑠𝑟2

; thus leaving an empty

spot in school 𝑐𝑟𝛾,4 at grade 𝑔1 that student ℎ𝑟𝛾,1 would like to fill.

(iii) Assume ℎ𝑟𝛾,1 , ℎ𝑟𝛾,2 are matched in school 𝑐𝑟𝛾,4 . Without loss of generality, assume that student

𝑠𝑟2
is matched in school 𝑐𝑟𝛾,4 . If student 𝑑𝑟𝛾,11

is matched in school 𝑐𝑟𝛾,3 , then student 𝑠𝑟1
has

justified envy towards ℎ𝑟𝛾,1 . Otherwise, 𝑠𝑟1
is matched in 𝑐𝑟𝛾,3 . This can only happen if 𝑑𝑟𝛾,11

is matched in 𝑐𝑟𝛾,2 and at least one other sibling between 𝑑𝑟𝛾,2 and 𝑑𝑟𝛾,1 is matched in 𝑐𝑟𝛾,2 .

However, given that both ℎ𝑟𝛾,1 , ℎ𝑟𝛾,2 are matched in school 𝑐𝑟𝛾,4 , then both 𝑑𝑟𝛾,2 and 𝑑𝑟𝛾,1 are

matched in 𝑐𝑟𝛾,1 .

(iv) Assume 𝑑𝑟𝛾,1 , 𝑑𝑟𝛾,11
, 𝑑𝑟𝛾,2 are matched in school 𝑐𝑟𝛾,2 . Then 𝑠𝑟1

is matched in 𝑐𝑟𝛾,3 , thus leaving

an empty spot in 𝑐𝑟𝛾,4 for ℎ𝑟𝛾,1 to fill; which, as a consequence, leaves an empty spot in 𝑐𝑟𝛾,1
at grade 𝑔1 for 𝑑𝑟𝛾,1 or 𝑑𝑟𝛾,11

to fill.

(v) Assume 𝑑𝑟𝛾,1 , 𝑑𝑟𝛾,2 in school 𝑐𝑟𝛾,1 . Then, 𝑑𝑟𝛾,11
is matched in 𝑐𝑟𝛾,3 , and students 𝑠𝑟1

, 𝑠𝑟2
are both

matched in 𝑐𝑟𝛾,4 . Therefore, ℎ𝑟𝛾,1 , receiving absolute priority from ℎ𝑟𝛾,3 , has justified envy

towards 𝑑𝑟𝛾,1 .

Similarly, we can show that family 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } and family 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } can never be matched

in a contingent stable matching to the schools 𝑐𝑞𝛿,𝑘 for 𝑞 ∈ [𝑛], 𝛿 ∈ {𝛼, 𝛽}, 𝑘 ∈ [4].
Finally, assume only one sibling of family 𝑓 is matched to a school 𝑐𝑞𝛿,𝑘 ; if the other sibling is

unmatched, then by absolute priority we would fall in the case just studied; otherwise, if a sibling

is matched to a preferred school, by Lemma A.1, they would be matched together. Therefore, none

of the siblings of family 𝑓 would be matched to school 𝑐𝑞𝛿,𝑘 . □
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Lemma A.3. Let𝑀 ′ be a stable matching with Absolute priorities of instance 𝐼 ′ and let 𝑓 be a family
of students of the types 𝑓𝑒𝑖 = {𝑒𝑖1 , 𝑒𝑖2 }, and 𝑓𝑏𝑖 = {𝑏𝑖1 , 𝑏𝑖2 } for 𝑖 ∈ [𝐿]. Then all the siblings of family 𝑓

are matched.

Proof. As mentioned before, in every stable matching 𝑒𝑖2 is matched to 𝑐𝑖1 and 𝑏𝑖2 is matched to

𝑐𝑖2 . We prove by contradiction that also 𝑒𝑖1 and 𝑏𝑖1 must be matched.

Assume that 𝑒𝑖1 is not matched. If there is an empty spot in 𝑐𝑖1 or 𝑐𝑖2 , then there is wastefulness.

Otherwise, both schools 𝑐𝑖1 and 𝑐𝑖2 are fully matched. In particular, school 𝑐𝑖1 is fully matched, and

this could only happen in two possible ways: i) 𝑏𝑖1 and 𝑠𝑖1 are matched to school 𝑐𝑖1 , or ii) 𝑠𝑖1 and 𝑠𝑖2
are matched to school 𝑐𝑖1 . In case i), 𝑒𝑖1 is more preferred by school 𝑐𝑖1 to either 𝑏𝑖1 or 𝑠𝑖1 ; hence

𝑒𝑖1 has justified envy. In case ii), 𝑒𝑖1 receives absolute priority from sibling 𝑒𝑖2 ; therefore, 𝑒𝑖1 has

justified envy.

The case of student 𝑏𝑖1 is similar. □

Lemma A.4. Let𝑀 ′ be a stable matching with Absolute priorities of instance 𝐼 ′. For every 𝑖 ∈ [𝐿]
only one family of students between 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } and 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } can be matched to their most
preferred school.

Proof. First, note that 𝑓𝑠𝑖 and 𝑓𝑠𝑖 cannot be both matched to their most preferred school, other-

wise by Lemma A.3 students 𝑒𝑖1 and 𝑏𝑖1 would be unmatched.

Note also that both families 𝑓𝑠𝑖 and 𝑓𝑠𝑖 cannot be matched to their second choices. Indeed, if

that would be the case, then there would be a total of two empty spots in the schools 𝑐𝑖1 , 𝑐𝑖2 , hence

wastefulness.

We also know by Lemma A.2 that both families 𝑓𝑠𝑖 and 𝑓𝑠𝑖 cannot be matched to schools 𝑐𝑖𝛿,𝑘
where 𝑖 ∈ [𝐿], 𝛿 ∈ {𝛼, 𝛽}, 𝑘 ∈ [4].

Finally, recall that by Lemma A.1 the siblings in each of the two families 𝑓𝑠𝑖 and 𝑓𝑠𝑖 must be

matched together; moreover, cumulatively in schools 𝑐𝑖1 , 𝑐𝑖2 there are two empty spots at grade 𝑔1.

Then one family must be matched to their first choice and the other to their second choice. □

Corollary A.5. Let𝑀 ′ be a stable matching with Absolute priorities of instance 𝐼 ′. Then, every
student is matched.

Proof. The last kinds of students we need to show that are always matched in a absolute

contingent stable matching are those in families 𝑓ℎ𝛿 , 𝑓𝑑𝛿 , 𝑓𝑥𝛿 , 𝑓𝑦𝛿 , 𝑓𝑡𝛿 for 𝛿 ∈ {𝛼, 𝛽,𝛾}.
As mentioned in Lemma A.2, in a stable matching without priorities, we have that the matching

of schools 𝑐𝑞𝛿,𝑘 (𝑘 ∈ [4]) and family 𝑓𝑠𝑞 for 𝑞 ∈ [𝑛] would be

𝜇 = {(𝑠𝑞1
, 𝑐𝑞𝛿,4 ), (𝑠𝑞2

, 𝑐𝑞𝛿,4 ), (𝑡𝑞𝛿 , 𝑐𝑞𝛿,4 ), (𝑥𝑞𝛿 , 𝑐𝑞𝛿,2 ), (𝑦𝑞𝛿 , 𝑐𝑞𝛿,2 ), (𝑑𝑞𝛿,2 , 𝑐𝑞𝛿,2 ),
(𝑑𝑞𝛿,1 , 𝑐𝑞𝛿,3 ), (𝑑𝑞𝛿,11

, ∅), (ℎ𝑞𝛿,1 , 𝑐𝑞𝛿,1 ), (ℎ𝑞𝛿,2 , 𝑐𝑞𝛿,1 ), (ℎ𝑞𝛿,3 , 𝑐𝑞𝛿,1 )}.
However, as we proved in Lemma A.2, family 𝑓𝑠𝑞 will never be matched to a school 𝑐𝑞𝛿,𝑘 in an

Absolute contingent stable matching. Therefore, in an Absolute contingent stable matching, we

have that schools 𝑐𝑞𝛿,𝑘 (𝑘 ∈ [4]) would be

𝜇′ = {(𝑡𝑞𝛿 , ∅), (𝑥𝑞𝛿 , 𝑐𝑞𝛿,2 ), (𝑦𝑞𝛿 , 𝑐𝑞𝛿,2 ), (𝑑𝑞𝛿,2 , 𝑐𝑞𝛿,1 ), (𝑑𝑞𝛿,1 , 𝑐𝑞𝛿,1 ),
(𝑑𝑞𝛿,11

, 𝑐𝑞𝛿,3 ), (ℎ𝑞𝛿,1 , 𝑐𝑞𝛿,4 ), (ℎ𝑞𝛿,2 , 𝑐𝑞𝛿,4 ), (ℎ𝑞𝛿,3 , 𝑐𝑞𝛿,1 )}.
The other possible absolute contingent stable matching involving schools 𝑐𝑞𝛿,𝑘 (𝑘 ∈ [4]) would

switch the matchings of siblings 𝑑𝑞𝛿,1 and 𝑑𝑞𝛿,11
. Following a reasoning similar to the one of

Lemma A.2, it is possible to show that all the other matching involving Absolute priorities would

not be stable because one of the siblings would be seeking a better matching.
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□

Lemma A.6. Let 𝐼 be an instance of (3,3)-COM-SMTI and let 𝐼 ′ be the reduced instance of SMAP. If
there is a complete stable matching in 𝐼 , then there is a stable matching with Absolute priorities in 𝐼 ′.

Proof. Given a complete stable matching𝑀 in 𝐼 , we describe how to build a stable matching

with absolute priorities𝑀 ′
in 𝐼 ′. Let𝑚𝑖 be a man with a tie as a preference list of the form (𝑤𝑘 ,𝑤𝑙 ).

First, for 𝛿 ∈ {𝛼, 𝛽}, we match

(𝑡𝑖𝛿 , ∅), (𝑥𝑖𝛿 , 𝑐𝑖𝛿,2 ), (𝑦𝑖𝛿 , 𝑐𝑖𝛿,2 ), (𝑑𝑖𝛿,2 , 𝑐𝑖𝛿,1 ), (𝑑𝑖𝛿,1 , 𝑐𝑖𝛿,1 ), (𝑑𝑖𝛿,11
, 𝑐𝑖𝛿,3 ), (ℎ𝑖𝛿,1 , 𝑐𝑖𝛿,4 ), (ℎ𝑖𝛿,2 , 𝑐𝑖𝛿,4 ), (ℎ𝑖𝛿,3 , 𝑐𝑖𝛿,1 ).

Then, if𝑚𝑖 is matched to𝑤𝑘 , we match 𝑓𝑠𝑖 to school 𝑐𝑘 , 𝑓𝑠𝑖 to school 𝑐𝑖2 , {𝑒𝑖1 , 𝑒𝑖2 , 𝑏𝑖1 } to school 𝑐𝑖1
and 𝑏𝑖2 to school 𝑐𝑖2 . Otherwise, if𝑚𝑖 is matched to𝑤𝑙 , then we match 𝑓𝑠𝑖 to school 𝑐𝑙 , 𝑓𝑠𝑖 to school

𝑐𝑖1 , {𝑏𝑖1 , 𝑏𝑖2 , 𝑒𝑖1 to school 𝑐𝑖2 and 𝑒𝑖2 } to school 𝑐𝑖1 .

Consider now a man𝑚𝑟 with a strict preference list who is matched to a woman𝑤𝑟𝑘 for 𝑘 ∈ [3]
where the preference list of𝑚𝑟 is𝑤𝑟1

≻ 𝑤𝑟2
≻ 𝑤𝑟3

. As argued in Remark A.1, student 𝑠𝑟3
is matched

to school 𝑐𝑟2
at grade 𝑔2. Students 𝑠𝑟1

and 𝑠𝑟2
are both matched to school 𝑐𝑟𝑘 . Finally, we match the

following pairs:

(𝑡𝑟𝛾 , ∅), (𝑥𝑟𝛾 , 𝑐𝑟𝛾,2 ), (𝑦𝑟𝛾 , 𝑐𝑟𝛾,2 ), (𝑑𝑟𝛾,2 , 𝑐𝑟𝛾,1 ), (𝑑𝑟𝛾,1 , 𝑐𝑟𝛾,1 ), (𝑑𝑟𝛾,11
, 𝑐𝑟𝛾,3 ), (ℎ𝑟𝛾,1 , 𝑐𝑟𝛾,4 ), (ℎ𝑟𝛾,2 , 𝑐𝑟𝛾,4 ), (ℎ𝑟𝛾,3 , 𝑐𝑟𝛾,1 )

It is straightforward to verify that these assignments provide a matching in 𝐼 ′. We need to show

that this matching is stable with absolute priorities.

First of all, as proved in Lemma A.5 for 𝑞 ∈ [𝑛] and 𝛿 ∈ {𝛼, 𝛽,𝛾}, the following matching

involving schools (𝑐𝑞𝛿,𝑘 )𝑘∈[4] is stable:
(𝑡𝑞𝛿 , ∅), (𝑥𝑞𝛿 , 𝑐𝑞𝛿,2 ), (𝑦𝑞𝛿 , 𝑐𝑞𝛿,2 ), (𝑑𝑞𝛿,2 , 𝑐𝑞𝛿,1 ), (𝑑𝑞𝛿,1 , 𝑐𝑞𝛿,1 ), (𝑑𝑞𝛿,11

, 𝑐𝑞𝛿,3 ), (ℎ𝑞𝛿,1 , 𝑐𝑞𝛿,4 ), (ℎ𝑞𝛿,2 , 𝑐𝑞𝛿,4 ), (ℎ𝑞𝛿,3 , 𝑐𝑞𝛿,1 )

Let us prove that none of the students in the families 𝑓𝑠𝑖 , 𝑓𝑠𝑖 , 𝑓𝑏𝑖 , 𝑓𝑒𝑖 are part of a blocking pair for

𝑖 ∈ [𝐿]. Without loss of generality, assume that 𝑓𝑠𝑖 is matched to 𝑐𝑠𝑘 ; neither 𝑠𝑖1 nor 𝑠𝑖2 have justified

envy towards 𝑒𝑖1 , 𝑏𝑖1 since they have a better ranking in school 𝑐𝑖1 . Student 𝑒𝑖1 cannot have justified

envy towards students in family 𝑓𝑠𝑖 because they are matched with absolute priority; student 𝑏𝑖1
is matched to their first choice. Note also that students 𝑒𝑖2 and 𝑏𝑖2 are matched to the only school

that deem them acceptable. Finally, students in family 𝑓𝑠𝑖 cannot have justified envy since they are

matched to their most preferred school.

Let us show now that none of the siblings in family 𝑓𝑠𝑟 is part of a blocking pair, for 𝑟 ∈
{𝐿 + 1, . . . , 𝑛}. From Remark A.1, we know that student 𝑠𝑟3

is matched to school 𝑐𝑟2
at grade 𝑔2,

which is also the only school that deem 𝑠𝑟3
acceptable. If siblings 𝑠𝑟1

and 𝑠𝑟2
are matched to school

𝑐𝑟1
then they are matched to their most favourite school. Otherwise, if 𝑠𝑟1

and 𝑠𝑟2
are matched to

school 𝑐𝑟2
, then, by Corollary A.5 school 𝑐𝑟1

must be matched to another family 𝑓𝑠𝑞 ; note that family

𝑓𝑠𝑞 , by Assumption A.1, it must also be the most preferred family of school 𝑐𝑟1
; then, siblings 𝑠𝑟1

and 𝑠𝑟2
cannot have justified envy. Finally, assume siblings 𝑠𝑟1

and 𝑠𝑟2
are matched to school 𝑐𝑟3

.

Again, this must be the case if school 𝑐𝑟1
is matched to their most preferred family, and school 𝑐𝑟2

is

matched to another family 𝑓𝑠𝑙 . Assume the preference list of school 𝑐𝑟2
is 𝑓𝑠𝑖 ≻ 𝑓𝑠𝑟 ≻ 𝑓𝑠 𝑗 . If 𝑓𝑠𝑙 = 𝑓𝑠𝑖 ,

then siblings 𝑠𝑟1
and 𝑠𝑟2

cannot have justified envy. However, if 𝑓𝑠𝑙 = 𝑓𝑠 𝑗 , then siblings 𝑠𝑟1
and 𝑠𝑟2

have justified envy since they receive absolute priority from their sibling 𝑠𝑟3
; note that in this case,

also man𝑚𝑟 would have justified envy towards man𝑚 𝑗 , who is matched to woman𝑤𝑟2
in 𝐼 . □

Lemma A.7. Let 𝐼 be an instance of (3,3)-COM-SMTI and let 𝐼 ′ be the reduced instance of SMAP. If
there is a stable matching with Absolute priorities in 𝐼 ′, then there is a complete stable matching in 𝐼 .

Proof. Let 𝑀 ′
be a stable matching with Absolute priorities of instance 𝐼 ′. We now describe

how to build a weakly stable matching 𝑀 of instance 𝐼 . Let𝑚𝑖 be a man with a tie of the form
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(𝑤𝑘 ,𝑤𝑙 ) as a preference list; as we observed in Lemmata A.1, A.2 and A.4, the families 𝑓𝑠𝑖 and 𝑓𝑠𝑖
are such that (i) the families must be matched (in particular not to the two least preferred schools),

(ii) the siblings of each family are matched together, (iii) each family is matched to one of the first

two most preferred schools, and (iv) only one of the two family is matched to the most preferred

school. Therefore, we match man𝑚𝑖 to woman 𝑤𝑘 (𝑤𝑙 ) if family 𝑓𝑠𝑖 (𝑓𝑠𝑖 ) is matched to school 𝑐𝑘
(𝑐𝑙 ). On the other side, given a man𝑚𝑟 with a strict preference list, we know Lemmata A.1, A.2

and A.4 that family 𝑓𝑠𝑟 must be matched together to a school 𝑐𝑟𝑞 (𝑞 ∈ [3]), therefore, we match in 𝐼

man𝑚𝑟 with the corresponding woman.

Now we prove that the so built assignment 𝑀 of instance 𝐼 is indeed a matching and it is

complete. First, note that by Corollary A.5, we have the guarantee that every single student is

matched and families of types 𝑓𝑠𝑖 , 𝑓𝑠𝑖 and 𝑓𝑠𝑟 (𝑖 ∈ [𝐿], 𝑟 ∈ {𝐿 + 1, . . . , 𝑛}) have their siblings matched

together. Additionally, we observe that each woman 𝑤 𝑗 has a copy school 𝑐 𝑗 with capacity two;

therefore, every family matched to a school 𝑐 𝑗 , corresponds to a man that should be matched to

the corresponding woman𝑤 𝑗 . Since all families are matched to a different school, then all men in

matching𝑀 must be matched to a different woman; in particular, notice that a man𝑚𝑖 cannot be

matched to two women𝑤𝑘 and𝑤𝑙 since only one family between 𝑓𝑠𝑖 and 𝑓𝑠𝑖 can be matched to 𝑐𝑖1
and 𝑐𝑖2 , respectively. Hence𝑀 is a matching.

Finally, we prove that there is no man who can be part of a blocking pair. Any man 𝑚𝑖 for

𝑖 ∈ [𝐿] cannot be part of a blocking pair since it has a preference list that is a tie of length 2.

Then, consider a man𝑚𝑟 for 𝑟 ∈ {𝐿 + 1, . . . , 𝑛} with a strict preference list and assume 𝑤𝑘 is a

woman whom𝑚𝑟 prefer over his current match in𝑀 . Therefore, also family 𝑓𝑠𝑟 = {𝑠𝑟1
, 𝑠𝑟2

} must

prefer school 𝑐𝑘 more than their current match. By Lemma A.2 students 𝑠𝑟1
and 𝑠𝑟2

can only be

matched to schools 𝑐𝑟1
, 𝑐𝑟2

, 𝑐𝑟3
. Clearly, the woman𝑤𝑘 that man𝑚𝑟 prefers cannot be𝑤𝑟3

, therefore

we must verify what happens when𝑤𝑘 = 𝑤𝑟1
or𝑤𝑘 = 𝑤𝑟2

. In the case in which𝑤𝑘 = 𝑤𝑟1
, then𝑤𝑘

is matched to another acceptable man; by Assumption A.1 we deduce that𝑤𝑘 is matched to a man

𝑚𝑖 with a tie as a preference list and that the preference list of𝑤𝑘 is𝑚𝑖 ≻𝑚𝑟 . Therefore,𝑚𝑟 has

no justified envy. In the second case, 𝑤𝑘 = 𝑤𝑟2
. By Assumption A.1 we deduce that 𝑤𝑟2

must be

matched to a man𝑚𝑖 or a man𝑚 𝑗 both of whom have a tie as a preference list; the preference list

of𝑤𝑟2
is𝑚𝑖 ≻ 𝑚𝑟 ≻ 𝑚 𝑗 . Hence, if𝑤𝑟2

is matched to𝑚𝑖 , woman𝑤𝑟2
does not create a blocking pair.

Otherwise, 𝑤𝑟2
is matched to𝑚 𝑗 , and (𝑤𝑟2

,𝑚𝑟 ) is a blocking pair. However, by Remark A.1, we

have that student 𝑠𝑟3
is matched at grade 𝑔2 with school 𝑐𝑟2

. Note also that the preference list of

school 𝑐𝑟2
is 𝑓𝑠𝑖 ≻ 𝑓𝑠𝑟 ≻ 𝑓𝑠 𝑗 , therefore, students 𝑠𝑟1

and 𝑠𝑟2
have justified envy towards family 𝑓𝑠 𝑗 as

they receive absolute priority from their sibling 𝑠𝑟3
. Then, also the matching in 𝐼 ′ is not absolute

contingent stable. □

The sequence of Lemmata A.1- A.7 proves that SMAP is NP-hard. Therefore, SMAP is NP-

complete and Theorem 4.7 holds.

A.3.2 Partial priorities: Proof of Theorem 4.8. In this section, we show that deciding whether

a stable matching with Partial priorities exists is an NP-complete problem. We denote this problem

as SMPP. Following the same reasoning at the beginning of the proof of Theorem 4.7, we conlude

that SMPP is in NP. It remains to show that it is NP-hard. To this end, we use again a reduction

from (3,3)-COM-SMTI considering Assumption A.1.

Next, we provide a reduction from an instance 𝐼 of (3,3)-COM-SMTI to an instance 𝐼 ′ of SMPP.

In the instance 𝐼 there are 𝑛 women𝑚1, . . . ,𝑚𝑛 and 𝑛 men𝑤1, . . . ,𝑤𝑛 .

Let us now describe the reduction from instance 𝐼 into instance 𝐼 ′. On the side of the men, we

must distinguish whether a man has a strict preference list or a preference list made of a tie. Without

loss of generality, we assume that the men with indices in the set [𝐿] := {1, . . . , 𝐿} (𝐿 ≤ 𝑛) have a

tie as a preference list, and the men with indices {𝐿 + 1, . . . , 𝑛} have a strict preference list.



194 31

Let𝑚𝑖 be a man in 𝐼 with a tie of the form (𝑤𝑘 ,𝑤𝑙 ) as a preference list; note that woman𝑤𝑘 is

listed first in the tie, and woman𝑤𝑙 is listed second in the tie. For man𝑚𝑖 , we create twelve families

of students and ten schools in 𝐼 ′. The families of students are: 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }, 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }, 𝑓𝑒𝑖 =
{𝑒𝑖1 , 𝑒𝑖2 , 𝑒𝑖3 }, 𝑓𝑏𝑖 = {𝑏𝑖1 , 𝑏𝑖2 , 𝑏𝑖3 }, 𝑓ℎ𝑖𝛼 = {ℎ𝑖𝛼,1 , ℎ𝑖𝛼,2 }, 𝑓𝑑𝑖𝛼 = {𝑑𝑖𝛼,1 , 𝑑𝑖𝛼,2 }, 𝑓𝑥𝑖𝛼 = {𝑥𝑖𝛼 }, 𝑓𝑦𝑖𝛼 = {𝑦𝑖𝛼 },
𝑓ℎ𝑖𝛽

= {ℎ𝑖𝛽,1 , ℎ𝑖𝛽,2 }, 𝑓𝑑𝑖𝛽 = {𝑑𝑖𝛽,1 , 𝑑𝑖𝛽,2 }, 𝑓𝑥𝑖𝛽 = {𝑥𝑖𝛽 }, 𝑓𝑦𝑖𝛽 = {𝑦𝑖𝛽 }, where students 𝑒𝑖2 , 𝑏𝑖2 , ℎ𝑖𝛼,2 , ℎ𝑖𝛽,2
apply at grade 𝑔2, students 𝑒𝑖3 , 𝑏𝑖3 apply at grade 𝑔3, and all the other students apply at grade 𝑔1.

The schools are: 𝑐𝑖1 , 𝑐𝑖2 , 𝑐𝑖𝛼,1 , 𝑐𝑖𝛼,2 , 𝑐𝑖𝛼,3 , 𝑐𝑖𝛼,4 , 𝑐𝑖𝛽,1 , 𝑐𝑖𝛽,2 , 𝑐𝑖𝛽,3 , 𝑐𝑖𝛽,4 , where school 𝑐𝑖1 has two spots at

grade 𝑔1 and two spots at grade 𝑔2, school 𝑐𝑖2 has two spots at grade 𝑔1 and two spots at grade

𝑔3, schools 𝑐𝑖𝛼,2 , 𝑐𝑖𝛼,4 , 𝑐𝑖𝛽,2 , 𝑐𝑖𝛽,4 have each two spots at grade 𝑔1, and schools 𝑐𝑖𝛼,1 , 𝑐𝑖𝛼,3 , 𝑐𝑖𝛽,1 , 𝑐𝑖𝛽,3 have

each one spot at grade 𝑔1, moreover, schools 𝑐𝑖𝛼,1 , 𝑐𝑖𝛽,1 have each one spot at grade 𝑔2. Note that in

every matching 𝑒𝑖2 , 𝑏𝑖2 are matched with school 𝑐𝑖1 at grade 𝑔2, that 𝑒𝑖3 , 𝑏𝑖3 are matched with school

𝑐𝑖2 at grade 𝑔3, and that ℎ𝑖𝛼,2 , ℎ𝑖𝛽,2 are matched with schools 𝑐𝛼,1 and 𝑐𝛽,1 respectively at grade 𝑔2.

Now, let𝑚𝑟 be a man in 𝐼 with a strict preference list of the form𝑤𝑟1
,𝑤𝑟2

,𝑤𝑟3
. In instance 𝐼 ′ we

create five families of students and four schools. The families of students are 𝑓𝑠𝑟 = {𝑠𝑟1
, 𝑠𝑟2

, 𝑠𝑟3
},

𝑓ℎ𝑟𝛾 = {ℎ𝑟𝛾,1 , ℎ𝑟𝛾,2 }, 𝑓𝑑𝑟𝛾 = {𝑑𝑟𝛾,1 , 𝑑𝑟𝛾,2 }, 𝑓𝑥𝑟𝛾 = {𝑥𝑟𝛾 }, 𝑓𝑦𝑟𝛾 = {𝑦𝑟𝛾 }, where students 𝑠𝑟3
and ℎ𝑟𝛾,2 apply

at grade 𝑔2 and all the other students apply at grade 𝑔1. The new schools in 𝐼 ′ are: 𝑐𝑟𝛾,1 , 𝑐𝑟𝛾,2 , 𝑐𝑟𝛾,3 ,
𝑐𝑟𝛾,4 , where schools 𝑐𝑟𝛾,1 and 𝑐𝑟𝛾,3 have each one spot at grade 𝑔1, and schools 𝑐𝑟𝛾,2 and 𝑐𝑟𝛾,4 have each

two spots at grade 𝑔1, additionally, school 𝑐𝑟𝛾,1 has one spot at grade 𝑔1. The preference lists of the

families and schools created from the men in instance 𝐼 are shown in Figure 4.

On the side of the women, for every woman 𝑤 𝑗 in 𝐼 , we create in 𝐼 ′ a school 𝑐 𝑗 of capacity

2 at grade 𝑔1, for 𝑗 ∈ [𝑛]; moreover, if a woman 𝑤 𝑗 has a preference list of length 3 and finds

acceptable a man with a strict preference list, then school 𝑐 𝑗 has an additional capacity 1 at grade

𝑔2. The preference list of school 𝑐 𝑗 is built in the following way. If a man𝑚𝑖 in the preference list of

woman𝑤 𝑗 has a preference list with a tie (i.e.,𝑤 𝑗 is listed in the tie of man𝑚𝑖 ) and𝑤 𝑗 is the first

(second) woman listed in the tie, then school 𝑐 𝑗 substitutes man𝑚𝑖 with students {𝑠𝑖1 , 𝑠𝑖2 } ({𝑠𝑖1 , 𝑠𝑖2 });
otherwise, if a man𝑚𝑟 in the preference list of woman𝑤 𝑗 has a strict preference list, then school

𝑐 𝑗 substitutes man𝑚𝑟 with students {𝑠𝑟1
, 𝑠𝑟2

}. The same observations pointed out in Remark A.1

apply.

The reduction just described can be computed in polynomial time. We need to prove that it is

correct.

Lemma A.8. Let𝑀 ′ be a stable matching with partial priorities of instance 𝐼 ′ and let 𝑓 be a family
of the type 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }, 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }, or 𝑓𝑠𝑟 = {𝑠𝑟1

, 𝑠𝑟2
}, for 𝑖 ∈ [𝐿], 𝑟 ∈ {𝐿 + 1, . . . , 𝑛}. If at least

one of the members of family 𝑓 is matched to a school 𝑐 𝑗 ( 𝑗 ∈ [𝑛]) or to a school 𝑐𝑖1 , 𝑐𝑖2 (𝑖 ∈ [𝐿]), then
the siblings of family 𝑓 are matched together.

Proof. We prove our statement by contradiction, assuming that the siblings of family 𝑓 are not

matched together.

First, assume the family is 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }. Let us assume that 𝑠𝑖1 is matched to 𝑐𝑖1 . If 𝑠𝑖1 is matched

alone to 𝑐𝑖1 , then there is wastefulness since 𝑠𝑖2 would prefer to be matched to 𝑐𝑖1 since it is her most

preferred school. Otherwise, if 𝑒𝑖1 is also matched to 𝑐𝑖1 , then, 𝑏𝑖1 has justified envy towards 𝑠𝑖1 ,

since 𝑏𝑖1 receives priority from 𝑏𝑖2 at school 𝑐𝑖1 . Finally, if 𝑏𝑖1 is matched to 𝑐𝑖1 , then 𝑠𝑖2 has justified

envy towards 𝑏𝑖1 since it has a better ranking and receives priority from 𝑠𝑖1 . Now, let us assume

that 𝑠𝑖1 is matched to 𝑐𝑘 and that 𝑠𝑖2 is matched to 𝑐𝑖𝛼,3 , or to 𝑐𝑖𝛼,4 or is unmatched. If 𝑠𝑖1 is the only

student matched to 𝑐𝑘 (recall that school 𝑐𝑘 has two positions available at grade 𝑔1), then there is

wastefulness since 𝑠𝑖2 would prefer to be matched to 𝑐𝑘 . Otherwise, assume another student 𝑎1 from

another family 𝑓𝑎 = {𝑎1, 𝑎2} is matched to 𝑐𝑘 (note that only students with a sibling can be matched

to a school 𝑐𝑘 ); if 𝑓𝑠𝑖 is more preferred than 𝑓𝑎 by school 𝑐𝑘 , then 𝑠𝑖2 has justified envy towards

𝑎1. Otherwise, assume 𝑓𝑎 is more preferred than 𝑓𝑠𝑖 by school 𝑐𝑘 ; if family 𝑓𝑎 prefers 𝑐𝑘 over the
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For 𝑖 ∈ [𝐿]
𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } : 𝑐𝑖1 , 𝑐𝑘 , 𝑐𝑖𝛼,3 , 𝑐𝑖𝛼,4 𝑐𝑖1 : 𝑒𝑖2 𝑏𝑖2 , 𝑒𝑖1 , 𝑠𝑖1 , 𝑠𝑖2 , 𝑏𝑖1

𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } : 𝑐𝑖2 , 𝑐𝑙 , 𝑐𝑖𝛽,3 , 𝑐𝑖𝛽,4 𝑐𝑖2 : 𝑒𝑖3 , 𝑏𝑖3 , 𝑏𝑖1 , 𝑠𝑖1 , 𝑠𝑖2 , 𝑒𝑖1

𝑓𝑒𝑖 = {𝑒𝑖1 , 𝑒𝑖2 } : 𝑐𝑖2 , 𝑐𝑖1

𝑓𝑏𝑖 = {𝑏𝑖1 , 𝑏𝑖2 } : 𝑐𝑖1 , 𝑐𝑖2

𝑓ℎ𝑖𝛼 = {ℎ𝑖𝛼,1 , ℎ𝑖𝛼,2 } : 𝑐𝑖𝛼,4 , 𝑐𝑖𝛼,1 𝑐𝑖𝛼,1 : ℎ𝑖𝛼 , 𝑑𝑖𝛼,1 , 𝑥𝑖𝛼 , 𝑦𝑖𝛼 , 𝑑𝑖𝛼,2 , 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑑𝑖𝛼 = {𝑑𝑖𝛼,1 , 𝑑𝑖𝛼,2 } : 𝑐𝑖𝛼,1 , 𝑐𝑖𝛼,2 , 𝑐𝑖𝛼,3 𝑐𝑖𝛼,2 : ℎ𝑖𝛼 , 𝑑𝑖𝛼,1 , 𝑥𝑖𝛼 , 𝑦𝑖𝛼 , 𝑑𝑖𝛼,2 , 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑥𝑖𝛼 = {𝑥𝑖𝛼 } : 𝑐𝑖𝛼,2 𝑐𝑖𝛼,3 : ℎ𝑖𝛼 , 𝑑𝑖𝛼,1 , 𝑥𝑖𝛼 , 𝑦𝑖𝛼 , 𝑑𝑖𝛼,2 , 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑦𝑖𝛼 = {𝑦𝑖𝛼 } : 𝑐𝑖𝛼,2 𝑐𝑖𝛼,4 : ℎ𝑖𝛼 , 𝑑𝑖𝛼,1 , 𝑥𝑖𝛼 , 𝑦𝑖𝛼 , 𝑑𝑖𝛼,2 , 𝑠𝑖1 , 𝑠𝑖2

𝑓ℎ𝑖𝛽
= {ℎ𝑖𝛽,1 , ℎ𝑖𝛽,2 } : 𝑐𝑖𝛽,4 , 𝑐𝑖𝛽,1 𝑐𝑖𝛽,1 : ℎ𝑖𝛽 , 𝑑𝑖𝛽,1 , 𝑥𝑖𝛽 , 𝑦𝑖𝛽 , 𝑑𝑖𝛽,2 , 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑑𝑖𝛽
= {𝑑𝑖𝛽,1 , 𝑑𝑖𝛽,2 } : 𝑐𝑖𝛽,1 , 𝑐𝑖𝛽,2 , 𝑐𝑖𝛽,3 𝑐𝑖𝛽,2 : ℎ𝑖𝛽 , 𝑑𝑖𝛽,1 , 𝑥𝑖𝛽 , 𝑦𝑖𝛽 , 𝑑𝑖𝛽,2 , 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑥𝑖𝛽
= {𝑥𝑖𝛽 } : 𝑐𝑖𝛽,2 𝑐𝑖𝛽,3 : ℎ𝑖𝛽 , 𝑑𝑖𝛽,1 , 𝑥𝑖𝛽 , 𝑦𝑖𝛽 , 𝑑𝑖𝛽,2 , 𝑠𝑖1 , 𝑠𝑖2

𝑓𝑦𝑖𝛽
= {𝑦𝑖𝛽 } : 𝑐𝑖𝛽,2 𝑐𝑖𝛽,4 : ℎ𝑖𝛽 , 𝑑𝑖𝛽,1 , 𝑥𝑖𝛽 , 𝑦𝑖𝛽 , 𝑑𝑖𝛽,2 , 𝑠𝑖1 , 𝑠𝑖2

For 𝑟 = 𝐿 + 1, . . . , 𝑛

𝑓𝑠𝑟 = {𝑠𝑟1
, 𝑠𝑟2

} : 𝑐𝑟1
, 𝑐𝑟2

, 𝑐𝑟3
, 𝑐𝑟𝛾,3 , 𝑐𝑟𝛾,4

𝑓ℎ𝑟𝛾 = {ℎ𝑟𝛾,1 , ℎ𝑟𝛾,2 } : 𝑐𝑟𝛾,4 , 𝑐𝑟𝛾,1 𝑐𝑟𝛾,1 : ℎ𝑟𝛾 , 𝑑𝑟𝛾,1 , 𝑥𝑟𝛾 , 𝑦𝑟𝛾 , 𝑑𝑟𝛾,2 , 𝑠𝑟1
, 𝑠𝑟2

𝑓𝑑𝑟𝛾 = {𝑑𝑟𝛾,1 , 𝑑𝑟𝛾,2 } : 𝑐𝑟𝛾,1 , 𝑐𝑟𝛾,2 , 𝑐𝑟𝛾,3 𝑐𝑟𝛾,2 : ℎ𝑟𝛾 , 𝑑𝑟𝛾,1 , 𝑥𝑟𝛾 , 𝑦𝑟𝛾 , 𝑑𝑟𝛾,2 , 𝑠𝑟1
, 𝑠𝑟2

𝑓𝑥𝑟𝛾 = {𝑥𝑟𝛾 } : 𝑐𝑟𝛾,2 𝑐𝑟𝛾,3 : ℎ𝑟𝛾 , 𝑑𝑟𝛾,1 , 𝑥𝑟𝛾 , 𝑦𝑟𝛾 , 𝑑𝑟𝛾,2 , 𝑠𝑟1
, 𝑠𝑟2

𝑓𝑦𝑟𝛾 = {𝑦𝑟𝛾 } : 𝑐𝑟𝛾,2 𝑐𝑟𝛾,4 : ℎ𝑟𝛾 , 𝑑𝑟𝛾,1 , 𝑥𝑟𝛾 , 𝑦𝑟𝛾 , 𝑑𝑟𝛾,2 , 𝑠𝑟1
, 𝑠𝑟2

Fig. 4. The preference lists of the families and schools created from the men in the original instance.

current assignment of 𝑎2, then 𝑎2 has justified envy towards 𝑠𝑖1 . Otherwise, 𝑎2 prefers her matching

to school 𝑐𝑙 rather than to being matched with 𝑐𝑘 ; from Theorem 3.1 ([20]) it can be deduced that

the case in which a family from a man𝑚𝑖 is ranked less than another family by a school 𝑐𝑘 can

only happen with a school of type (2) of Assumption A.1: If 𝑓𝑎 is a family reduced from a man

𝑚 𝑗 ( 𝑗 ∈ [𝐿]), then 𝑎2 wants to be matched to 𝑐 𝑗𝑞 (for a certain 𝑞 ∈ [2]), thus the matching is not

stable. Otherwise, 𝑓𝑎 is a family reduced from a man𝑚𝑟 (𝑟 ∈ {𝐿 + 1, . . . , 𝑛}), and 𝑎2 is matched to

their top choice 𝑐𝑟1
, which is also ranked second by another family 𝑓𝑢𝑖 (𝑖 ∈ [𝐿]); thus, or 𝑓𝑢𝑖 applies

altogether to 𝑐𝑟1
or 𝑓𝑢𝑖 applies to 𝑐𝑢1

, in both cases making the matching𝑀 ′
not stable.

The case of family 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } is similar to the one of family 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }.
Finally, let us consider the case of family 𝑓𝑠𝑟 = {𝑠𝑟1

, 𝑠𝑟2
}. Assume 𝑠𝑟1

is matched to a school 𝑐𝑟 𝑗
( 𝑗 ∈ [3]) and 𝑠𝑟2

is matched to a less preferred school. Again, if 𝑠𝑟1
is the only student matched to 𝑐𝑟 𝑗 ,
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then there is wastefulness. Otherwise, there is another student 𝑎1 from family 𝑓𝑎 = {𝑎1, 𝑎2} that is
also matched with 𝑐𝑟 𝑗 . As we saw earlier for family 𝑓𝑠𝑖 , if 𝑓𝑠𝑟 is more preferred than 𝑓𝑎 by school 𝑐𝑟 𝑗 ,

then by partial priorities 𝑠𝑟2
has justified envy towards 𝑎1. In the case in which 𝑓𝑎 is more preferred

than 𝑓𝑠𝑟 by school 𝑐𝑟 𝑗 , then we fall again in contradiction as we just saw earlier in the proof. □

Lemma A.9. Let𝑀 ′ be a stable matching with partial priorities of instance 𝐼 ′ and let 𝑓 be a family of
students of the type 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }, or 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 }, or 𝑓𝑠𝑟 = {𝑠𝑟1

, 𝑠𝑟2
} for 𝑖 ∈ [𝐿] and 𝑟 ∈ {𝐿+1, . . . , 𝑛}.

Then, family 𝑓 is matched to a school 𝑐 𝑗 ( 𝑗 ∈ [𝑛]) or to a school 𝑐𝑖1 , 𝑐𝑖2 (𝑖 ∈ [𝐿]). In particular, none of
the siblings of family 𝑓 are matched to a school of the type 𝑐𝑞𝛿,𝑘 where 𝑞 ∈ [𝑛], 𝛿 ∈ {𝛼, 𝛽,𝛾}, 𝑘 ∈ [4].

Proof. First, we show that family 𝑓𝑠𝑟 = {𝑠𝑟1
, 𝑠𝑟2

} cannot be matched to any school of the type

𝑐𝑟𝛾,𝑘 where 𝑟 ∈ {𝐿 + 1, . . . , 𝑛}, and 𝑘 ∈ [4]. Assume neither 𝑠𝑟1
nor 𝑠𝑟2

can be matched to a school

𝑐𝑟1
, 𝑐𝑟2

, 𝑐𝑟3
. Note there is only one stable matching without sibling priority involving the schools

𝑐𝑟𝛾,𝑘 for 𝑘 ∈ [4]:
𝜇 = {(𝑠𝑟1

, 𝑐𝑟𝛾,4 ), (𝑠𝑟2
, ∅), (𝑥𝑟𝛾 , 𝑐𝑟𝛾,2 ), (𝑦𝑟𝛾 , 𝑐𝑟𝛾,2 ), (𝑑𝑟𝛾,1 , 𝑐𝑟𝛾,1 ), (𝑑𝑟𝛾,2 , 𝑐𝑟𝛾,3 ), (ℎ𝑟𝛾,1 , 𝑐𝑟𝛾,4 ), (ℎ𝑟𝛾,2 , 𝑐𝑟𝛾,1 )}.

Clearly, every other matching different from 𝜇 in which two siblings are not matched together, is

not stable. The reasoning to prove that there is no stable matching with partial priorities follows

the same reasoning of Proposition 4.2, where family 𝑓𝑠𝑟 has the role of family 𝑓𝑎 .

Similarly, we can show that family 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } and family 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } can never be matched

in a stable matching with partial priorities to the schools 𝑐𝑞𝛿,𝑘 for 𝑞 ∈ [𝐿], 𝛿 ∈ {𝛼, 𝛽}, 𝑘 ∈ [4].
Finally, assume only one sibling of family 𝑓 is matched to a school 𝑐𝑞𝛿,𝑘 ; if the other sibling is

unmatched, then by partial priority we would fall in the case just studied; otherwise, if a sibling is

matched to a preferred school, by Lemma A.1, they would be matched together. Therefore, none of

the siblings of family 𝑓 would be matched to school 𝑐𝑞𝛿,𝑘 . □

Lemma A.10. Let𝑀 ′ be a stable matching with partial priorities of instance 𝐼 ′ and let 𝑓 be a family
of students of the type 𝑓𝑒𝑖 = {𝑒𝑖1 , 𝑒𝑖2 , 𝑒𝑖3 }, or 𝑓𝑏𝑖 = {𝑏𝑖1 , 𝑏𝑖2 , 𝑏𝑖3 } for 𝑖 ∈ [𝐿]. Then, all the siblings of
family 𝑓 are matched.

Proof. As mentioned before, in every stable matching 𝑒𝑖2 , 𝑏𝑖2 are matched to 𝑐𝑖1 and 𝑒𝑖3 , 𝑏𝑖3 are

matched to 𝑐𝑖2 . We prove by contradiction that also 𝑒𝑖1 and 𝑏𝑖1 must be matched.

Assume that 𝑒𝑖1 is not matched. If there is an empty spot in 𝑐𝑖1 or 𝑐𝑖2 , then there is wastefulness.

Otherwise, both schools 𝑐𝑖1 and 𝑐𝑖2 are fully matched. In particular, school 𝑐𝑖1 is fully matched, and

this could only happen in two possible ways: (i) 𝑏𝑖1 and 𝑠𝑖1 are matched to school 𝑐𝑖1 , or (ii) 𝑠𝑖1 and

𝑠𝑖2 are matched to school 𝑐𝑖1 . In case (i), 𝑒𝑖1 is more preferred by school 𝑐𝑖1 to either 𝑏𝑖1 or 𝑠𝑖1 ; hence

𝑒𝑖1 has justified envy. In case (ii), 𝑒𝑖1 receives partial priority from sibling 𝑒𝑖2 ; therefore, in both

dependent and independent priority, 𝑒𝑖1 has justified envy.

The case of student 𝑏𝑖1 is similar. □

Lemma A.11. Let𝑀 ′ be a stable matching with partial priorities of instance 𝐼 ′. For every 𝑖 ∈ [𝐿]
only one family of students between 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } and 𝑓𝑠𝑖 = {𝑠𝑖1 , 𝑠𝑖2 } can be matched to their most
preferred school.

Proof. First, note that 𝑓𝑠𝑖 and 𝑓𝑠𝑖 cannot be both matched to their most preferred school, other-

wise by Lemma A.10 students 𝑒𝑖1 and 𝑏𝑖1 would be unmatched.

Note also that both families 𝑓𝑠𝑖 and 𝑓𝑠𝑖 cannot be matched to their second choices. Indeed, if

that would be the case, then there would be a total of two empty spots in the schools 𝑐𝑖1 , 𝑐𝑖2 , hence

wastefulness.

We also know by Lemma A.9 that both families 𝑓𝑠𝑖 and 𝑓𝑠𝑖 cannot be matched to schools 𝑐𝑖𝛿,𝑘
where 𝑖 ∈ [𝐿], 𝛿 ∈ {𝛼, 𝛽}, 𝑘 ∈ [4].
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Finally, recall that by Lemma A.8 the siblings in each of the two families 𝑓𝑠𝑖 and 𝑓𝑠𝑖 must be

matched together; moreover, cumulatively in schools 𝑐𝑖1 , 𝑐𝑖2 there are two empty spots at grade 𝑔1.

Then, one family must be matched to their first choice and the other to their second choice. □

Corollary A.12. Let 𝑀 ′ be a stable matching with partial priorities of instance 𝐼 ′. Then, every
student is matched.

Proof. The proof follows the same reasoning of Corollary A.5.

□

Lemma A.13. Let 𝐼 be an instance of (3,3)-COM-SMTI and let 𝐼 ′ be the reduced instance of the
SMPP problem. If there is a complete weakly stable matching in 𝐼 , then there is a stable matching with
partial priorities in 𝐼 ′.

Proof. The proof follows the same reasoning of Lemma A.6. □

Lemma A.14. Let 𝐼 be an instance of (3,3)-COM-SMTI and let 𝐼 ′ be the reduced instance of SMPP. If
there is a stable matching with partial priorities in 𝐼 ′, then there is a complete weakly stable matching
in 𝐼 .

Proof. The proof follows the same reasoning of Lemma A.7. □

The sequence of Lemmata A.8- A.14 proves that SMPP is NP-hard. Therefore, SMPP is NP-

complete and Theorem 4.8 holds.

B ADDITIONAL RESULTS
C EXTRA DISCUSSION ON HOW TO PROCESS GRADE LEVELS AND OTHERS
As proposed in [8], one option to handle contingent priorities is to define an order in which grades

are processed and sequentially solve the assignment of each grade level using the student-optimal

variant of the Deferred Acceptance (DA) algorithm. More specifically, the algorithm in [8] starts

processing the highest grade (i.e., 12th grade). Then, before moving to the next grade, the sibling

priorities are updated, considering the assignment of the grade levels already processed. After

processing the final grade level (i.e., Pre-K), this procedure finishes. Notice that this heuristic obtains

a stable assignment if the preferences of families satisfy higher-first, i.e., each family prioritizes the

assignment of their oldest member (see Proposition 2 in [8]). However, this is not the case if some

families’ preferences do not satisfy this condition. In addition, as Example C.1 illustrates, the order

in which grades are processed matters.

Example C.1. Consider an instance with two grades 𝑔1 < 𝑔2, two schools 𝑐1 and 𝑐2 with one seat

in each grade, one family 𝑓 = {𝑓1, 𝑓2}, and two additional students, 𝑎1 and 𝑏2. Students 𝑓1 and 𝑎1

apply to grade 𝑔1, and 𝑓2 and 𝑏2 apply to grade 𝑔2. Finally, the preferences and priorities are:

(𝑐2, 𝑐1) ≻𝑓 (𝑐1, 𝑐1) ≻𝑓 (𝑐2, 𝑐2) ≻𝑓 (𝑐1, 𝑐2)
𝑐2 ≻𝑎1

𝑐1

𝑐1 ≻𝑏2
𝑐2

𝑝𝑎1,𝑐1
> 𝑝 𝑓1,𝑐1

and 𝑝𝑏2,𝑐1
> 𝑝 𝑓2,𝑐1

𝑝𝑎1,𝑐2
> 𝑝 𝑓1,𝑐2

and 𝑝𝑏2,𝑐2
> 𝑝 𝑓2,𝑐2

.

(7)

Since the preferences ≻𝑓 are responsive, we can easily derive the related individual preferences ≻𝑓1

and ≻𝑓2 , which are 𝑐2 ≻𝑓1 𝑐1 and 𝑐1 ≻𝑓2 𝑐2 [16, 17].We observe that, if grades are processed in decreas-

ing order (as in Chile), we obtain the matching 𝜇 = {(𝑓1, 𝑐2), (𝑎1, 𝑐1), (𝑓2, 𝑐2), (𝑏2, 𝑐1)}. In contrast, if
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Table 3. Effect on Siblings

Separated

Together None One Both

STB-F

Absolute 676.12 67.25 54.49 72.47

Partial 423.05 99.71 138.88 209.61

SOSM 423.05 99.71 138.88 209.61

FOSM 419.98 99.0 140.07 211.47

Ascending 509.36 100.03 108.49 150.45

Ascending FA 619.5 96.75 112.43 89.94

Descending 520.14 95.85 102.98 146.56

Descending FA 626.1 95.16 103.4 97.54

MTB-F

Absolute 679.19 64.57 54.28 76.39

Partial 427.61 87.03 146.94 219.42

SOSM 427.61 87.03 146.94 219.42

FOSM 428.31 88.46 146.14 219.1

Ascending 509.0 87.42 116.3 163.34

Ascending FA 621.67 84.45 119.84 99.52

Descending 526.34 84.46 107.0 156.81

Descending FA 625.81 82.73 107.77 108.58

STB

Absolute 674.83 60.05 56.13 75.09

Partial - - - -

SOSM 350.64 76.29 180.92 262.42

FOSM 352.79 78.55 179.99 258.55

Ascending 483.17 77.67 131.85 174.45

Ascending FA 604.46 73.92 136.47 103.16

Descending 493.16 74.62 122.07 174.58

Descending FA 608.39 72.79 122.95 115.15

MTB

Absolute 682.88 60.94 54.29 77.99

Partial - - - -

SOSM 348.6 74.42 174.67 285.31

FOSM 347.01 77.16 172.76 287.37

Ascending 476.68 75.54 128.61 197.7

Ascending FA 601.0 71.99 132.63 121.06

Descending 496.33 73.42 118.85 186.83

Descending FA 608.25 72.06 119.58 128.6

Note: For STB and MTB, there are no entries for Partial because the problem is not feasible for any of the simulations

considered. For all the other simulations, both Absolute and Partial are feasible.

we process grades in increasing order, we obtain thematching 𝜇′ = {(𝑓1, 𝑐1), (𝑎1, 𝑐2), (𝑓2, 𝑐1), (𝑏2, 𝑐2)}.
□

D FAMILY-ORIENTED FORMULATION
A natural benchmark for comparing our approaches is the problem that aims to maximize the

number of family members assigned to the same school subject to the standard notion of stability.
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The following mathematical programming formulation aims to model this baseline:

max

t∈{0,1}F×C ,x∈P

∑︁
𝑓 ∈F

∑︁
𝑐∈C

©­«
∑︁
𝑠∈ 𝑓

𝑥𝑠,𝑐 − |𝑓 | · 𝑡𝑓 ,𝑐
ª®¬ (8a)

𝑠𝑡 . Constraint (1b)∑
𝑠∈ 𝑓 𝑥𝑠,𝑐

|𝑓 | ≤ 𝑡𝑓 ,𝑐 ≤
∑︁
𝑠∈ 𝑓

𝑥𝑠,𝑐 , ∀𝑓 ∈ F ,∀𝑐 ∈ C. (8b)

This formulation is similar to Program (1). However, in Program (8), we have a new binary variable

𝑡𝑓 ,𝑐 which is 1 if and only if family 𝑓 has at least one sibling in school 𝑐 , and zero otherwise; this is

enforced through constraint (8b). In addition, in the objective, we maximize the number of family

members in the same school.

E EXTENSIONS
E.1 Static Priorities
As discussed in Section 3, sibling priorities come in two ways: (i) static, whereby an applicant

gets prioritized if they have a sibling currently enrolled in the school for the following year; and

(ii) contingent, whereby an applicant gets prioritized if they have a sibling participating in the

system and assigned to the school. Given that students assigned to some school may decide not

to enroll and, thus, the priority given may not be effective, it is natural to assume that students

with static priorities prevail over students with contingent priorities. Indeed, this is the case in the

Chilean school choice system, where siblings with static priority have the highest priority, and

then students with contingent priority are considered only if there are vacancies left. We formalize

this in Assumption E.1.

Assumption E.1. Students with static priority have a higher priority than students with contingent
priority.

The formulations provided in Section 5 can be easily extended to account for static priorities

under Assumption E.1. To accomplish this, let 𝜌𝑠,𝑐 be a binary parameter that is equal to 1 if student

𝑠 has a sibling currently enrolled for the next year in school 𝑐 , and zero otherwise. Every student

for which 𝜌𝑠,𝑐 = 1 is placed on top of the order for school 𝑐 , i.e., 𝑠 ≻𝑐 𝑎 for all 𝑎 ∈ S𝑔 (𝑠 )
such that

𝜌𝑎,𝑐 = 0, and any two students with static priorities are sorted according to their tie-breakers (as

discussed in Assumption 3.2 (2)). Then, both the Absolute and Partial formulations can be updated

to account for static priorities by adding the following set of constraints:

𝑞
𝑔 (𝑠 )
𝑐 ·

©­­­«𝜌𝑠,𝑐 −
∑︁
𝑐′∈C:

𝑐′⪰𝑠𝑐

𝑥𝑠,𝑐′

ª®®®¬ ≤
∑︁

𝑎∈S𝑔 (𝑠 )
:

𝜌𝑎,𝑐=1∧𝑎≻𝑐𝑠

𝑥𝑎,𝑐 , ∀(𝑠, 𝑐) ∈ S × C. (9)

If 𝑠 has static priority in 𝑐 and is not in 𝑐 or better, then it must be because there are 𝑞
𝑔 (𝑠 )
𝑐 students

in the static priority group (𝜌𝑎,𝑐 = 1) with higher tie-breaker than 𝑠 in 𝑐 that are assigned to it. In

all other cases, (𝜌𝑠,𝑐 ,
∑

𝑐′∈C:𝑐′⪰𝑠𝑐
𝑥𝑠,𝑐′ ) ∈ {(1, 1), (0, 1), (0, 0)}, the constraint is redundant.

Note that incorporating secured enrollment, i.e., the fact that current students that are applying

to relocate in a different school get the highest priority to stay in their school if they do not get

assigned to a new one, can be easily incorporated in a similar fashion.
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