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Motivated by online dating apps, we consider the assortment optimization problem faced by a two-sided

matching platform. Users on each side observe an assortment of profiles and decide which of them to like. A

match occurs if and only if two users mutually like each other, potentially in different periods. We study how

platforms should make assortment decisions to maximize the expected number of matches under different

platform designs, varying (i) how users interact with each other, i.e., whether one or both sides of the market

can initiate an interaction, and (ii) the timing of matches, i.e., either sequentially or also simultaneously.

We show that the problem is NP-hard and that common approaches perform arbitrarily badly. Given the

complexity of the problem and industry practices, we focus on the case with two periods and provide

algorithms and performance guarantees for different platform designs. We establish that, when interactions

are one-directional and matches only take place sequentially, there is an approximation guarantee of 1−1/e,

which becomes arbitrarily close to 1/2 if we allow for two-directional interactions. Moreover, when we

enable matches to happen sequentially and simultaneously in the first period, we provide an approximation

guarantee close to 1/2, which becomes approximately 1/3 when we allow two-directional interactions. Finally,

we discuss some model extensions and use data from our industry partner to numerically show that the loss

for not considering simultaneous matches is negligible. Our results suggest that platforms should focus on

simple sequential adaptive policies to make assortment decisions.

Key words : Two-sided Assortment Optimization, Matching Markets, Submodular Optimization.

1. Introduction

A common feature of many matching platforms is their two-sided design, in which (i) both sides

of the market have preferences, (ii) both sides of the market can initiate an interaction with the

other side, and (iii) users must mutually agree to generate a match. Examples include freelancing

platforms such as TaskRabbit or UpWork, ride-sharing apps such as Blablacar, accommodation

companies such as Airbnb, and dating platforms such as Hinge and Bumble. In many of these

platforms, the path toward a match starts with the platform eliciting preferences on both sides of

the market. For instance, most dating platforms require users to provide basic information such as
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their age, height, location, religion, and race, among others, and also to report their preferences over

these attributes. After collecting this information, most of these platforms display a limited set of

alternatives that users can screen before interacting with the other side of the market. Depending

on the setting, this interaction can be one-directional, with one side of the market sending an initial

request/message/like and the other side of the market either accepting or rejecting it; or it can

be two-directional, with both sides of the market being able to screen alternatives and move first.

Airbnb, Blablacar, and Bumble are examples of the former, while Hinge and Upwork are examples

of the latter. Finally, in all these platforms, a transaction or a match takes place if, and only if,

both sides of the market mutually accept/like each other.

As the previous discussion illustrates, one of the primary roles of these platforms is to select the

subset of alternatives—the assortment—to display, considering the preferences and characteristics

of the users on both sides of the market. We refer to this problem as a two-sided assortment problem.

While similar to the traditional (one-sided) assortment optimization problem faced by retailers,

where they decide which products to display to maximize expected revenue from customers, the

two-sided nature introduces additional complexities. Notably, in the two-sided problem, both users

need to acknowledge and agree with each other mutually. Therefore, even if one user expresses

interest in another, there is uncertainty regarding whether a match will actually occur. Furthermore,

the platform must carefully balance relevance by showing options likely to result in a match, and

congestion, as highly popular users may receive more requests than they can handle.

By carefully choosing the timing by which users can interact and the assortments to display,

platforms can influence the matching process and balance the trade-off between relevance and con-

gestion. Our research aims to guide platforms on how to make these decisions. More specifically,

the goal of this paper is twofold. First, we provide a framework to make optimal two-sided assort-

ment decisions under different platform designs, i.e., varying the constraints on how users interact

with each other and how matches are formed. Second, we study the effectiveness of commonly used

algorithms, design near-optimal ones, and analyze their performance in theory and practice.

1.1. Contributions

We study how platforms should make two-sided assortment decisions and how the timing in which

users interact affects the design of algorithms and their performance. To this end, we first provide

a stylized model of a two-sided market mediated by a platform. The platform must choose which

subset of profiles (i.e., the assortment) to show to each user. Then, users decide whether to like or

dislike each option in their assortments. The novelty of our work is that we allow the platform to

impose different constraints on how users interact with each other and how they can form matches.

We consider platform designs that vary (i) which side of the market can reach out first, allowing it to
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be one-directional—where one side evaluates first and the second only observes users that previously

liked them—or two-directional—where both sides of the market can see and evaluate new users in

each period; and (ii) how matches can be formed, allowing them to be sequential—whereby users

see and like each other in different periods after observing an initial like—or simultaneous—whereby

users can see and like each other in the same period.

First, we show that the problem faced by the platform is NP-hard, even if we consider the simplest

case with a time horizon of two periods and a platform design that only allows one-directional

interactions and sequential matches. Thus, to facilitate the theoretical analysis, we focus on the

two-period version of the problem where the platform chooses the assortments to show in the

first period and, based on users’ decisions, decides the second-period assortments to maximize the

expected number of matches from interactions initiated in the first period. This case is relevant in

practice since one-lookahead policies perform well, so this assumption is without major practical loss

(see Rios et al. (2023)). Moreover, the two-period version of the problem is theoretically interesting

and challenging, as we show that many common approaches (such as greedy, perfect matching, and

any non-adaptive deterministic approach) can perform arbitrarily poorly in this setting.

Despite these negative results, we provide constant factor approximations for each variant of

the problem, as summarized in Table 1. The first variant of the problem is when we only allow

for one-directional interactions and sequential matches, i.e., only users on one side of the market

can initiate an interaction and no pair of users see each other in the same period. This case is

particularly interesting because many two-sided marketplaces operate in this way, motivating recent

work (Ashlagi et al. 2022, Aouad and Saban 2022, Torrico et al. 2021). Moreover, some major dating

apps (e.g., Bumble) only allow one side of the market to reach out first, which has been shown to

improve the overall social welfare Kanoria and Saban (2021), Immorlica et al. (2022). In this case,

we provide an algorithm with a performance guarantee of 1− 1/e.

The second variant of the problem extends the first one by allowing sequential matches to hap-

pen in both directions, i.e., two-directional sequential matches. In this case, the platform selects

assortments for users on both sides of the market in each period and, thus, both sides of the market

can initiate an interaction. However, we assume that no pair of users see each other in the same

period, so matches can only occur in the second period. This design matches dating platforms that

select users’ assortments dynamically over time (e.g., Tinder), responding to users’ like and dislike

decisions. In this case, we provide a performance guarantee arbitrarily close to 1/2 using algorithmic

tools from submodular maximization.

The third variant expands on the initial one by allowing simultaneous matches in the first period.

More precisely, the platform chooses assortments for the “initiating” side of the market (hence, one-

directional interactions) but can also select pairs of users that will see each other in the first period
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and, thus, matches can happen if both users in these pairs see and like each other. This design is

used in some dating apps that combine “standard swiping” with video speed dating, such as Filteroff

and The League, where users can evaluate profiles as usual but can also log in at specific times and

get matched with users in their assortment for short video speed dates. For this setting, we provide

a performance guarantee close to 1/2.

The last variant of the problem is when interactions are two-directional, and matches can happen

either (i) sequentially or (ii) simultaneously in the first period. This platform design captures the one

used by many dating apps, such as Hinge and Coffee Meets Bagel, that daily precompute (generally

in the middle of the night) the assortments to display in a given day and do not adjust them based

on users’ activity during the same day. In this case, we provide a general performance guarantee

arbitrarily close to 1/3. Note that this setting is the same as the one considered in Rios et al.

(2023), where the authors provide a family of heuristics that perform well in practice but provide

no performance guarantees for the problem.

In addition to the results mentioned above, we provide several model extensions. First, we analyze

the case where the platform can form simultaneous matches in the second period and, if the market

is sufficiently large and the timing of interactions is one-directional with the most selective side

(i.e., with small like probabilities) initiating the interaction, we provide a guarantee of 1/4e. Our

one-directional assumption in large markets aligns with the results in Kanoria and Saban (2021),

Torrico et al. (2021), Shi (2022a) that show that platforms can reduce market congestion when the

more selective side (or the one whose preferences are harder to describe) initiates the matchmaking

process. To prove this guarantee, we show that the gains from allowing simultaneous matches in

the second period are relatively small compared to when we allow simultaneous matches in the

first period only. Second, we extend the time horizon to multiple periods for the one-directional

setting without simultaneous matches. For this case, we show that there exists a semi-adaptive

policy—i.e.,non-adaptive for the initiating side but adaptive for the responding one—that achieves

an approximation guarantee of 1− 1/e with respect to the optimal adaptive policy.

Finally, we empirically confirm that considering simultaneous matches in the second period (while

deciding the assortment to offer in the first period) does not play a significant role in the total

expected number of matches. Hence, we conjecture that the performance guarantees obtained for

the case with simultaneous matches in the first period should translate to the more general case.

Although we use dating as a motivating example due to an ongoing collaboration with a major

dating app in the US,1 our model is general enough to capture various two-sided matching markets.

On the one hand, platforms such as Airbnb and Blablacar fit into our framework as platforms that

1 This platform provided us with real data to test our proposed algorithms. We keep the app’s name undisclosed as
part of our NDA.
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allow one-directional interactions (as guests/riders start must start a transaction) and sequential

matches (as a match can only happen after a guest reaches out first and later the host accepts the

request). On the other hand, freelancing platforms such as Upwork are examples of two-directional

interactions with sequential matches, as both firms and freelancers can screen and contact each

other to start a transaction that often gets realized after some negotiation periods.

Table 1 Summary of results

Sequence of Interactions

One-directional Two-directional

Timing
of Matches

Sequential 1− 1/e 1/(2 + ε)
Simultaneous 1/(2 + ε) 1/(3 + ε)

Table 2 The results above are for an arbitrary ε > 0.

Organization of the paper. In Section 2, we discuss the most related literature. In Section 3, we

introduce our model, show that the problem is NP-hard, and show that some natural approaches

can perform arbitrarily poorly. In Section 4, we theoretically analyze the problem and provide our

performance guarantees under different platform designs. In Section 5, we provide several extensions

of our baseline model. In Section 6, we numerically compare our proposed algorithms with other

relevant benchmarks. Finally, in Section 7, we conclude. We defer all the proofs to the Appendix.

2. Related Literature

Our paper is related to several strands of the literature. First, we contribute to the literature on

assortment optimization. Most of this literature focuses on one-sided settings, where a retailer must

choose the assortment of products to show in order to maximize the expected revenue obtained from

a sequence of customers. This model, whose general version was introduced in Talluri and van Ryzin

(2004), has been extended to include capacity constraints (Rusmevichientong et al. 2010), different

choice models (Davis et al. 2014, Rusmevichientong et al. 2014, Blanchet et al. 2016, Farias et al.

2013), search (Wang and Sahin 2018), learning Caro and Gallien (2007), Rusmevichientong et al.

(2010), Sauré and Zeevi (2013), personalized assortments (Berbeglia and Joret 2015, Golrezaei et al.

2014), reusable products (Rusmevichientong et al. 2020), and also to tackle other problems such as

priority-based allocations (Shi 2022b). We refer to Kök et al. (2015) for an extensive review of the

current state of the assortment planning literature in one-sided settings.

Over the last couple of years, a new strand of the assortment optimization literature devoted

to two-sided markets has emerged. Ashlagi et al. (2022) introduce a model where each customer

chooses, simultaneously and independently, to either contact a supplier from the assortment offered

to them or to remain unmatched. Then, each supplier can either form a match with one of the
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customers who contacted them in the first place or remain unmatched. The platform’s goal is to

select the assortment of suppliers to show to each customer to maximize the expected number

of matches. The authors show that the problem is NP-hard, and they provide an algorithm that

achieves a constant factor approximation. Torrico et al. (2021) study the same problem and signifi-

cantly improve the approximation factor obtained by Ashlagi et al. (2022). Moreover, Torrico et al.

(2021) provide the first performance guarantee to the problem with cardinality constraints. Aouad

and Saban (2022) analyze the online version of this problem. Specifically, the platform must choose

the assortment of suppliers to show to each arriving customer, who decide whether to contact one

of the suppliers or to remain unmatched. Then, after some time, each supplier can choose to match

with at most one of the customers that chose them. The authors show that when suppliers do not

accept/reject requests immediately, then a simple greedy policy achieves a 1/2-factor approxima-

tion. Aouad and Saban (2022) also propose balancing algorithms that perform relatively well under

the Multinomial and Nested Logit models. Notice that all these papers analyze sequential two-sided

matching markets, where only one side can start the path towards a match. Users on the other side

only respond by deciding which user to match with among those who contacted them in the first

place. Moreover, customers are limited to choosing only one supplier in their assortments, and sup-

pliers can only choose one customer among those who initially contacted them. Hence, we contribute

to this literature by studying different platform designs, enabling two-directional interactions and

also simultaneous matches.

Within the emerging assortment optimization literature in two-sided markets, the closest paper

to ours is Rios et al. (2023). The authors introduce a finite horizon model where a platform chooses

an assortment for each user (on both sides of the market). Users can like/dislike as many of the

profiles in their assortment as they want, and a match is formed if both users like each other.

Notably, the authors assume that like probabilities depend on the number of matches the user

recently obtained, introducing a time-dependency across periods. In this case, the authors show that

the problem is NP-hard, and they propose a family of algorithms that account for the negative effect

that the matches obtained today may have on future periods. However, Rios et al. (2023) provide

no theoretical guarantees for their proposed algorithms. Hence, our paper complements this work

by providing the first performance guarantee for the problem with two-directional interactions and

sequential and simultaneous matches. Moreover, our paper expands the space of platform designs

to others commonly used and provides performance guarantees in each case.

The second stream of literature related to our paper is on the design of matching platforms.

Starting with the seminal work of Rochet and Tirole (2003), this literature has focused on participa-

tion, competition, and pricing, highlighting the role of cross-side externalities in different settings,

including ridesharing (Besbes et al. 2021), labor markets (Aouad and Saban 2022, Besbes et al.
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2023), crowdsourcing (Manshadi and Rodilitz 2022), public housing (Arnosti and Shi 2020), and

volunteering platforms (Manshadi et al. 2022). In the dating context, Halaburda et al. (2018) show

that two platforms can successfully coexist charging different prices by limiting the set of options

offered to their users. They show that, depending on their outside option, users must balance two

effects when choosing a larger platform: (i) a choice effect, whereby users are more likely to find

a partner that exceeds their outside option; and (ii) a competition effect, whereby agents on the

other side of the market are less likely to accept a request as they have more options available.

Kanoria and Saban (2021) study how the search environment can impact users’ welfare and the

performance of the platform. They find that simple interventions, such as limiting what side of

the market reaches out first or hiding quality information, can considerably improve the platform’s

outcomes. Finally, Immorlica et al. (2022) study settings where the platform can use its knowledge

about agents’ preferences to guide their search process, and show that the platform can induce

an equilibrium with approximately optimal welfare and simplify the agents’ decision problem by

limiting choice. All these models consider a stylized matching market, where users interact with the

other side of the market and leave the platform upon getting a match. Hence, we contribute to this

literature by allowing agents like multiple profiles in a given assortment and potentially match with

many of them within the time horizon.

The last stream of the literature related to our work, motivated by applications in kidney exchange,

is the stochastic matching problem in the query-commit model, also known as stochastic probing

with commitment. In this problem, the matchmaker can query the edges of a general graph (e.g., to

assess the compatibility between a pair donor-patient) to form a match of maximum cardinality using

the accepted edges. Starting from (Chen et al. 2009), who introduced the problem (with patience

constraints) and provided the first performance guarantee, most of this literature has focused on

settings where the matchmaker queries only one edge at a time, see e.g. (Adamczyk 2011, Costello

et al. 2012, Bansal et al. 2012, Gamlath et al. 2019, Hikima et al. 2021, Brubach et al. 2021, Jeloudar

et al. 2021). Nevertheless, Chen et al. (2009) also studied a case closer to ours, where the planner

can query a matching in each period. The authors show that a Greedy algorithm that selects the

edges with the highest success rate in decreasing order provides a 1/4-approximation to the optimal

online algorithm when forced to commit. Jeloudar et al. (2021) study the case when there is no

such commitment (i.e., the matchmaker can choose not to use an accepted edge) and show that a

similar Greedy algorithm achieves a 0.316-approximation guarantee. Our problem is similar to these

papers in that the edges are of uncertain reward (given that like decisions are stochastic). However,

we focus on selecting (or in other words, probing) assortments of profiles and each edge realization

(a match) depends on the result of two outcomes. Moreover, we show that the Greedy approaches

used in this strand of the literature perform arbitrarily badly when adapted to our setting.
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3. Model

In this section, we introduce a model of a two-sided market mediated by a platform that decides,

in each period, which subset of profiles (if any) to show to each user to maximize the expected

number of matches. Users can like as many profiles as they want within their assortment, and if

two users mutually like each others’ profiles (potentially in different periods), a match between

them materializes. In Section 3.1, we describe each model component and show that the problem

is NP-hard, even in the simplest case of two periods, one-directional interactions, and sequential

matches. Next, in Section 3.2, we show that some natural approaches perform arbitrarily poorly in

our two-sided assortment optimization setting.

3.1. Problem formulation

We consider a discrete-time problem over a finite horizon of T periods, and we denote by [T ] =

{1, . . . , T} the set of periods. Let I and J be the sets of users on each side of the market. At the

beginning of the horizon, we assume that each user `∈ I ∪J reports their profile information (e.g.,

age, height, religion, etc.) and their preferences regarding each of these dimensions (e.g., preferred

age and height ranges, preferred religions, etc.). The platform uses this information to compute

the set of potential partners P1
`—or simply potentials—for each user `, i.e., the set of users that `

prefers over being unassigned and for whom ` satisfies their preferences. To simplify the exposition,

we focus on a heterosexual market and, thus, P1
i ⊆ J for each i ∈ I and P1

j ⊆ I for each j ∈ J .2

This assumption is without major loss of generality and represents the highest share of users in the

dating apps described in the introduction.3 Moreover, we assume that the sets of users on each side

of the market are fixed and known at the beginning of the horizon and that their profile information

and preferences remain fixed throughout the horizon. As a result, we assume that no users enter or

leave the platform and that their set of potential partners only decreases over time. This assumption

is mostly to simplify the analysis and captures settings involving short-term horizons (e.g., daily).

Let E = {{i, j} : i ∈ I, j ∈ J} be the set of all possible undirected edges between I and J , and

let ~E = ~EI ∪ ~EJ be the set of all possible directed edges, where ~EI = {(i, j) : i∈ I, j ∈ J} and ~EJ =

{(j, i) : i ∈ I, j ∈ J} are the sets of all directed arcs between I and J and vicerversa, respectively.

Given the assumption that all users are heterosexual, the graph G= (I ∪J,E) is bipartite.

In each period t ∈ [T ], the platform selects a subset of potentials—an assortment—to show to

each user. Formally, let St` ⊆Pt` be the assortment offered to user `∈ I ∪ J in period t∈ [T ], where

Pt` is the set of available potentials for user ` at the beginning of period t. As we later discuss, these

sets of potentials are updated at the end of each period to capture users’ decisions and prevent users

2 We can easily extend our model to capture dating markets where users have other types of preferences.
3 More than 90% of users in our partner’s platform declared a binary gender and that they are only interested in
users of the opposite gender.
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from evaluating a profile they have already seen in the past or someone who has already disliked

them. Moreover, to mimic our industry partner’s practice, we assume that the maximum size of the

assortments is fixed and equal to K`, i.e., |St`| ≤K` for all `∈ I ∪J and t∈ [T ].

For each user ` ∈ I ∪ J and a profile in their assortment `′ ∈ St`, let Φt
``′ be the binary random

variable that indicates whether ` likes `′ in period t, i.e., Φt
``′ = 1 if ` likes `′ and 0 otherwise. In

addition, let φt``′ = P(Φt
``′ = 1) be the probability that ` likes `′ in period t. We assume that the

platform knows these probabilities and that they are independent across users and periods. The

former assumption is reasonable because users do not know whether other users liked them in the

past, while the latter assumption is for simplicity since Rios et al. (2023) show that the number

of matches obtained in the recent past affects users’ future behavior. Nevertheless, the magnitude

of the history effect identified in Rios et al. (2023) is small relative to the overall like probabilities

and, thus, it is of second order.4 In addition, we assume that like probabilities do not depend on

the assortment shown. This assumption also simplifies the analysis, allowing users to potentially

like several profiles without having to model preferences over sets. Moreover, as shown in Rios

et al. (2023), the assortment has no large effect on like behavior. Finally, let βt``′ = φt``′φ
t
`′` be the

probability of a match between users ` and `′ conditional on them seeing each other in period t.

Let Bt` be the backlog of user `∈ I ∪ J at the beginning of period t, i.e., the subset of users that

have liked user ` before period t, but have not been shown to ` yet. Then, we can now formalize

how to update the set of potentials and the backlog of user ` in period t:

Pt` =Pt−1
` \ (St−1

` ∪Rt−1
` ),

Bt` =
(
Bt−1
` ∪At−1

`

)
\St−1

` ,
(1)

where the sets At−1
` =

{
`′ : `∈ St−1

`′ and Φt−1
`′` = 1

}
and Rt−1

` = {`′ : ` ∈ St−1
`′ and Φt−1

`′` = 0} corre-

spond to the sets of users that liked and disliked ` in period t− 1, respectively.

A match between users ` and `′ occurs if both users see and like each other. Let µt``′ = 1 if a match

between users ` and `′ happens in period t, and let µt``′ = 0 otherwise. Then, we know that µt``′ = 1

if and only if one of next two events holds: (i) users see and like each other in different periods,

i.e., {Φt
``′ = 1, `′ ∈Bt`} or {Φt

`′` = 1, `∈Bt`′}; or (ii) users see and like each other in period t, i.e.,

`∈ St`′ , `′ ∈ St`, and Φt
``′ = Φt

`′` = 1. In the former case, we say that the match happens sequentially,

while in the latter we say that it happens simultaneously. Notice that these two events are disjoint

since users see each other at most once and, thus, we cannot simultaneously have that Φt
`′` = 1 and

`′ ∈ Bt`. The distinction between sequential and simultaneous matches will play a relevant role in

the remainder of this paper, as the complexity of the problem considerably increases if we allow for

the latter.

4 Note that φt``′ is not necessarily symmetric, i.e., φt``′ might be different from φt`′`.
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The platform aims to find a dynamic policy that selects a feasible assortment for each user

in each period to maximize the expected number of matches throughout the entire horizon, as

formalized in Problem 1.5 A policy π for this problem prescribes a sequence of feasible assortments

St,π =
{
St,π`

}
`∈I∪J for t = 1, . . . , T that depends on the initial sets of potentials, the history of

assortments shown, the realized like/dislike decisions, and the platform’s design that may vary (i)

what side of the market can start an interaction, and (ii) whether or not matches can happen

simultaneously. Specifically, we say that a policy π is one-directional if, in any given period and

alternating among sides over time, the platform restricts the assortments for one side of the market

to include only profiles of users that have either liked them in the past or that see them in the

current period and, consequently, only one side of the market can start a new interaction. For

instance, if side J is restricted in period t (and thus I is restricted in periods t− 1 and t+ 1) then

Stj ⊆
{
i∈Ptj : j ∈ Sτi , τ ≤ t

}
for each j ∈ J , i.e., each user j ∈ J either observes profiles from their

backlog (i.e., i∈ Btj) or from users that see them in period t (i.e., j ∈ Sti ).6 Conversely, we say that

a policy is two-directional. In addition, we say that a policy π only considers sequential matches if

no pair of users see each other in the same period, i.e., for any pair i∈ I, j ∈ J and period t, i∈ Stj
implies that j /∈ Sti and j ∈ Sti implies that i /∈ Stj. If this constraint does not hold, we say that the

policy allows simultaneous matches.

Problem 1. The two-sided assortment optimization problem is the following:

max
π∈Π

E

[
T∑
t=1

∑
i∈I

∑
j∈J

µt,πi,j

]

where Π is the set of all admissible policies satisfying the platform’s design choices and the expec-

tation is over the probabilistic choices made by the users and possibly the policy’s randomization.

Note that Problem 1 can be formulated as a dynamic programming (DP) where the state of the

system is fully characterized by the sets of potentials and backlogs; see Appendix A.1 for a general

version of this DP. Our first result, formalized in Proposition 1, states the complexity of Problem 1.

Proposition 1. Problem 1 is NP-hard, even if T = 2 and Π is restricted to one-directional

policies with only sequential matches.

All the proofs related to this section can be found in Appendix A. Given this complexity result,

we study the two-period version of the problem in the remainder of the paper. This assumption is

5 We can easily adapt our model to capture settings with a utility value per match; the properties and insights we
prove in this work carry over.
6 Note that, by the updating formulas in (1), i ∈ Ptj and j ∈ Sτi for some τ < t imply that i ∈ Btj , since otherwise i
would have been removed from the set of potentials of j at the end of period τ .
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without major loss, as Rios et al. (2023) show that one-lookahead policies perform well in practice.7

Hence, we can simplify the notation and denote by B` = B2
` the subset of users that liked ` in the

first period. Note that B is a random subset since it depends on the random realizations of the

like decisions in the first period; hereafter, we denote by B the realizations of B. Moreover, the

expected number of matches obtained in the second period results from the assortments shown

and the realized likes/dislikes in the first period. Hence, if we have a function that returns the

expected number of matches in the second period conditional on the assortments and likes in the

first period, we only need to consider the assortments offered in the first period as decision variables,

which correspond to a family of feasible assortments S1 = (S1
` )`∈I∪J such that, for given budgets

K`, S1
` ⊆P` and |S1

` | ≤K` for all `∈ I ∪J .
Given a family of feasible assortments S1,π, let Mπ

S be the random variable that indicates the

total number of matches achieved when S1,π is shown in the first period. Then, the two-period

version of Problem 1 can be written as Problem 2.

Problem 2. The two-sided assortment optimization problem with two periods is the following:

max
{
E [Mπ

S1 ] : S1,π =
{
S1,π
`

}
`∈I∪J , S

1,π
` ⊆P`, |S

1,π
` | ≤K`, for every `∈ I ∪J, π ∈Π

}
,

where the expectation is over the probabilistic choices made by the users and possibly the policy’s

randomization.

In the remainder of the paper, we focus on theoretically analyzing and deriving performance

guarantees for different variants of Problem (2), namely, varying (i) who starts an interaction (i.e.,

one vs. two-directional), and (ii) whether or not the platform allows simultaneous matches (i.e.,

sequential vs. simultaneous matches). In each case, the benchmark we will use to compare our

algorithms is the two-period DP formulation and its optimal value, denoted by OPT.8 We say that

an algorithm is an α-approximation if it implements a feasible solution and the expected number of

matches is at least an α fraction of OPT.

Remark 1. Note that the stronger omniscient optimum, which knows the realizations of all

like/dislikes in advance and computes the maximum matching in the realized graph, is too powerful.

In fact, no dynamic policy in our two-period model can achieve a meaningful guarantee with respect

to the expected omniscient optimal value. This has been previously observed in the literature, see

e.g. Chen et al. (2009), Jeloudar et al. (2021). For completeness, we include an example in the

Appendix A.3.

7 A one-lookahead policy is a policy that, in every period t, optimizes over the current and the next period, i.e., it
considers as horizon {t, t+ 1}.
8 Note that the benchmark’s optimal value depends on the space of policies that the platform allows, i.e., OPT =
OPTΠ. However, to simplify the notation, we do not write it as it is understood from the context.
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3.2. Natural Approaches

In this section, we show that some natural approaches can perform arbitrarily poorly in our setting,

i.e., their performance guarantees in the worst-case are asymptotically close to zero. Without loss of

generality, consider for this section the problem with K` = 1 for all ` ∈ I ∪ J under two-directional

interactions and when simultaneous matches are allowed.9 Then, the problem consists of deciding

which profile to show to each user in each period to maximize the number of matches, where a

match is formed simultaneously or sequentially (from the backlog).

Given these assumptions, our problem is closely related to (i) the (one-sided) assortment opti-

mization problem, (ii) the online matching problem and (iii) the stochastic matching problem in the

query-commit model. As a result, a natural approach would be to adapt commonly used algorithms

in these settings to our two-sided assortment problem. One such algorithm is the Greedy policy,

which provides a performance guarantee of 1/2 for both the online matching problem (Karp et al.

1990) and the online two-sided assortment problem (Aouad and Saban 2022). In our setting, such

a (local) greedy policy would select the subset of profiles that maximize the expected number of

matches obtained by each user. In Proposition 2 we show that this policy can be arbitrarily bad.

Proposition 2. The worst case approximation guarantee for the local greedy policy is zero.

The main issue with the local greedy policy is that it does not account for users’ externalities on

others, which may result in solutions that generate congestion among popular ones; Torrico et al.

(2021) make an analogous observation. An alternative natural approach that could address this

issue by leveraging the information available, namely, that the two sides of the market are fixed

and that the likes probabilities are known, would be to find a maximum weight perfect matching

in each period, where the weight of each edge is the probability of having a match between the

users. Chen et al. (2009) and Jeloudar et al. (2021) consider a similar approach in the probing

problem with and without commitment and show that it achieves a performance guarantee of 1/4

and 0.43, respectively. Nevertheless, as we show in Proposition 3, this policy can also perform

arbitrarily poorly.

Proposition 3. The worst case approximation guarantee for the perfect matching policy is zero.

The key limitation of this policy is that it does not exploit the information provided by the

realized like/dislike decisions. Thus, policies that only consider simultaneous matches may perform

poorly in some cases. For example, if I is much pickier than J , then the platform would benefit

from a policy that first shows assortments to users in I, observes the realized likes and dislikes,

and later decides the assortments to display to users in J rather than selecting them for both sides

9 We can construct similar examples for other platform designs.
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simultaneously. This observation aligns with previous findings in the literature showing that the

more selective side should start the interaction Kanoria and Saban (2021), Torrico et al. (2021), Shi

(2022a). Proposition 3 highlights this contrast between simultaneous and sequential matches.

The discussion above also relates to the performance of non-adaptive policies.10 In fact, any

non-adaptive policy in our setting can be interpreted as a policy that computes matchings in the

expected graph in advance and follows accordingly, which would be equivalent to a policy with

only simultaneous matches. The class of policies that pre-computes “suggested matchings” has been

shown to achieve sub-optimal competitive ratios in the online matching literature. For instance,

the policy that deterministically follows a suggested matching does not reach a competitive ratio

better 1/2 (Karp et al. 1990), and when it is randomized, the factor improves to 1− 1/e in the

i.i.d. setting, which is tight and sub-optimal (Feldman et al. 2009, Manshadi et al. 2012); for other

non-adaptive policies in online matching see (Mehta et al. 2013). As we show in the following result,

the performance of such policies is arbitrarily bad.

Proposition 4. The worst case approximation guarantee for any non-adaptive policy is zero.

These policies’ main drawback is that they focus only on simultaneous matches. There are two

main aspects in our model that affect this performance: (i) the two-sided nature of the market

with multiple users interacting at the same time and (ii) post-allocation stochasticity. First, some

two-sided markets may include pickier users, which implies that the platform may benefit from

“gathering some information” to clear the market efficiently. By focusing on sequential matches,

the platform can incorporate relevant information before making new assortment decisions; thus,

this design may be preferable.11 Second, non-adaptive policies are affected by the post-allocation

stochasticity present in the model: a match between two users depends on the realization of two

Bernoulli random variables. This effect has been observed in the literature of online matching with

stochastic rewards, where after deciding to match an arrival with a resource, a Bernoulli random

variable determines if the reward of the pair is collected or not Mehta and Panigrahi (2012). In fact,

Goyal and Udwani (2023) observe that a benchmark that knows all the realizations of the rewards

is too powerful and, in their setting, any online policy would perform arbitrarily badly. However,

knowing certain relevant realizations is possible in our setting by using sequential matches.

In the remainder of this work, we show that policies that consider sequential matches are powerful

and achieve constant provable guarantees, as they allow to deal with the two-sided nature of the

market and the post-allocation stochasticity present in the model., even when simultaneous matches

complement these policies.

10 A non-adaptive policy in our setting corresponds to a policy that chooses assortments that do not depend on the
like/dislike realizations observed in previous periods.
11 Note that, in some markets, simultaneous matches can be as good as sequential matches; for instance, when like
probabilities are close to 1.



Authors’ names blinded for peer review
14 Article submitted to Management Science; manuscript no.

4. Analysis for Different Platform Designs

In Section 3, we established that adapting standard algorithms from the assortment optimization

and online matching literature can perform arbitrarily badly in our two-sided assortment setting.

Hence, our goal in this section is to design algorithms to achieve improved performance guarantees

for Problem 2 under different platform designs. The properties of monotonicity and submodularity

of set functions will be crucial in our analysis. In particular, we will show that the function that

receives as an input a family of first-period assortments chosen from a ground-set of elements E and

returns the expected number of matches produced in the second period is monotone and submodular.

This result will allows us to devise efficient algorithms by using tools from submodular optimization

under matroid constraints.

Definition 1 (Monotonicity). A non-negative set function f : {0,1}E → R+ is monotone if,

for every x∈ {0,1}E and u∈ E such that xu = 0, we have f(x+1{u})≥ f(x).

Definition 2 (Submodularity). A non-negative set function f : {0,1}E → R+ is submodular

if, for every x ∈ {0,1}E and for every u, v ∈ E such that xu = xv = 0, we have f(x+ 1{u}+ 1{v})−

f(x+ 1{v})≤ f(x+ 1{u})− f(x), where 1{u} ∈ {0,1}E is the indicator vector with value 1 in com-

ponent u and zero elsewhere.

A common approach in submodular optimization is to extend the set function f : {0,1}E → R+

into a continuous domain [0,1]E . Although there are different continuous extensions, the most useful

in terms of algorithmic applications is the multilinear extension.

Definition 3 (Multilinear Extension). For a set function f : {0,1}E → R+, we define its

multilinear extension F : [0,1]E→R+ by

F (x) =
∑
S⊆E

f(S)
∏
u∈S

xu
∏
v∈E\S

(1−xv).

Given these preliminary definitions, we now focus on theoretically analyzing the two-sided assort-

ment problem under different platform designs. In Sections 4.1 and 4.2, we consider settings where

the platform only allows sequential matches, and we vary whether interactions are one or two-

directional, respectively. Then, in Sections 4.3 and 4.4, we relax the sequential assumption and allow

for simultaneous matches in the first period. The omitted proofs from this section can be found in

Appendix B.

4.1. Sequential Matches and One-directional Interactions

As discussed in the introduction, many dating platforms restrict which side of the market can reach

first to improve users’ welfare (Kanoria and Saban 2021, Immorlica et al. 2022). Given our horizon

of two periods, the simplest approach to accomplish this is to assume that the platform displays

assortments to only one side of the market in the first period and, conditional on the realized like and
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dislike decisions, the platform decides which subset of profiles to show to the other side of the market

in the second period. As a result, matches can only happen sequentially in the second period. This

setting is similar to that studied in the recent two-sided assortment optimization literature (Ashlagi

et al. 2022, Torrico et al. 2021, Aouad and Saban 2022), where customers first observe an assortment

of suppliers and select one of them and, later, the suppliers observe all the customers that chose

them and decide which one of them to serve. Our model departs from this literature in two key

aspects. First, we assume that users can like as many profiles as they want within their assortment

and, thus, can match with multiple users on the other side. Second, we assume that like probabilities

are independent of the assortment, while these papers consider an underlying choice model (e.g.,

MNL) to compute them. As mentioned above, this independence assumption greatly simplifies the

analysis, and it is practical given that assortments minimally affect users’ like probabilities.

Without loss of generality, we assume that interactions can only be initiated by agents in I. Hence,

the platform must choose a set of assortments S1 = {S1
i }i∈I for the users in I in the first period that

satisfy the constraints defined by the platform, namely, that S1
i ⊆ P1

i and that |S1
i | ≤Ki for each

i ∈ I. Noticing that each assortment S1
i can be represented as a subset of edges from the ground

set E = ~EI , we can re-formulate the feasible region of Problem 2 using a vector of binary variables

x1 =
{
x1
i,j

}
(i,j)∈E whereby x1

i,j = 1 if j ∈ S1
i , and x1

i,j = 0 otherwise:

P 1 =

{
x1 ∈ {0,1}E :

∑
j∈P1

i

x1
i,j ≤Ki, ∀i∈ I

}
. (2)

As we show in Lemma 1, this feasible region corresponds to a single partition matroid, which

simplifies the analysis of the problem.

Lemma 1. The feasible region P 1 defined in (4) corresponds to a single partition matroid.

Given that interactions are one-directional and no simultaneous matches are allowed, the platform

must decide which subset of profiles S2
j ⊆ P2

j to display to each user in j ∈ J to maximize the

expected number of matches. We know that all these matches result from initial likes realized in

the first period and, thus, the platform can restrict attention to assortments S2
j ⊆Bj, i.e., to only

include in the assortment S2
j profiles of users (if any) that liked user j ∈ J in the first period.12

Formally, given a realized family of backlogs B = {Bj}j∈J , let f(B) the function that returns the

expected number of matches obtained in the second period:

f(B) = max
x2∈P2(B)

{ ∑
(j,i)∈~EJ

φ2
j,ix

2
j,i

}
, (3)

12 Recall that, to ease notation, we dropped the upper-script capturing the time period and, thus, B2 =B.
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where the feasible region P 2(B) is defined as

P 2(B) =

{
x2 ∈ {0,1}~EJ :

∑
i∈P2

j

x2
j,i ≤Kj, x

2
j,i ≤ 1{i∈Bj}, ∀j ∈ J

}
. (4)

Lemma 2. The feasible region P 2(B) corresponds to a partition matroid for any realization B.

The fact that P 2(B) is a matroid is relevant because it allows us to directly show that the function f

is monotone and submodular, as shown in Fisher et al. (1978). We re-state this result in Corollary 1.

Moreover, as the evaluation of f only requires to optimize a linear function over a partition matroid,

we know that we can efficiently solve the second-period problem using a greedy algorithm.

Corollary 1 (Proposition 3.1 in Fisher et al. (1978)). The function f (B) is monotone

and submodular.

To adapt Problem 2 to this setting, it remains to connect the backlog realizations with the

assortments shown in the first period. Recalling that users can only like profiles in their assortments

and that users evaluations are independent of each other, we know that

IPx1 (B=B) =
∏
j∈J

∏
i∈Bj

φi,j ·x1
i,j

∏
i/∈Bj

(
1−φ1

i,jx
1
i,j

) . (5)

In words, the backlog of user j at the beginning of the second period is equal to Bj if all users

i ∈Bj saw and liked user j in the first period, while all users not in Bj either (i) did not see j in

their first period assortments, or (ii) saw but did not like j. Given the distribution of backlogs, we

can re-write Problem 2 as:

max
x1∈P1

{
M(x1) :=EB∼φ1x1 [f(B)]

}
(6)

where:13

EB∼φ1x1 [f(B)] =
∑
B⊆E

f(B) · IPx1 (B=B) . (7)

and φ1x1 is the vector with components φ1
i,jx

1
i,j.

Lemma 3. The functionM(x1) is motonone and submodular.

Notice that the standard greedy algorithm guarantees a 1/2-approximation for (6), since the objec-

tive is monotone and submodular (by Lemma 3) and the constraints in P 1 form a partition matroid

(by Lemma 1). Nevertheless, in the main result of this section (formalized in Theorem 1), we show

that we can improve this guarantee to 1− 1/e.

13 In a slight abuse of notation, we use B⊆ E to capture the backlogs of users j ∈ J at the beginning of the second
period, i.e., i∈Bj⇔ (i, j)∈B.
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Theorem 1. There exists a (1−1/e)-approximation algorithm for Problem 2 when Π is restricted

to one-directional policies with only sequential matches.

To prove Theorem 1, we use appropriate submodular optimization and randomized rounding tools

to theoretically analyze the reformulated problem in (6). To formalize this analysis, let F be the

multilinear extension of function f , i.e.,

F (x) =
∑
B⊆E

f(B)
∏
u∈B

xu
∏
v/∈B

(1−xv).

Note that, for any x ∈ {0,1}E , we have F (φ1x1) =M(x1), where φ1x1 denotes the vector with

components φ1
i,jx

1
i,j for all i ∈ I, j ∈ J . As previously discussed, representing M(x1) through a

multilinear expansion has the advantage that the latter can be evaluated in [0,1]E rather than only

in {0,1}E . Then, consider the following optimization problem:

max F (z) (8a)

s.t.
∑

j∈J:φ1
ij>0

zij
φ1
ij

≤Ki for every i∈ I, (8b)

0≤ ze ≤ φ1
e for every e∈ E . (8c)

First, we show the following:

Lemma 4. The optimal value of (8a)-(8c) is an upper bound on the optimal value of (6).

Then, since f is monotone and submodular and F inherits all its properties, we can use Lemma

4.2 in Vondrák (2008) (see Corollary 2) to find our desired performance guarantee. Formally,

Corollary 2 (Vondrák (2008)). There exists an efficient algorithm that computes a point z

that satisfies (8b) and (8c) such that F (z)≥ (1− 1/e) · F (z∗), where z∗ is an optimal solution of

(8a)-(8c).

We emphasize that the solution z in Corollary 2 might be fractional, so we need to use a rounding

procedure to construct the final solution of our problem. Before moving on, we provide some details

on the algorithm we use to prove Theorem 1, which we formalize in Algorithm 1. Our algorithm

is based mainly on two different tools: (i) the continuous greedy algorithm proposed by (Vondrák

2008), and (ii) the dependent randomized rounding algorithm by Gandhi et al. (2006).

Given the fractional solution z satisfying the guarantee in Corollary 2, let yi ∈ [0,1]J be the

fractional vector such that the j-th entry is equal to zi,j/φ1
i,j when φ1

i,j > 0 and zero otherwise.

Observe that thanks to constraint (8c) we have yi ∈ [0,1]J for each i ∈ I. Then, independently for

each user i ∈ I, by the algorithm in Gandhi et al. (2006) it is possible to efficiently compute an

integral random vector xi ∈ {0,1}J satisfying the following conditions:
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Algorithm 1 Approximation Algorithm for One-Directional Interactions and Sequential Matches
Input: An instance for a two-sided assortment problem.

Output: A feasible assortment S1.

1: Compute a solution z for the problem (8a)-(8c) using the algorithm from Corollary 2.

2: For each i∈ I and j ∈ J , set yi,j = zi,j/φ
1
i,j when φ1

i,j > 0 and zero otherwise.

3: Independently for each user i ∈ I, run the dependent randomized rounding algorithm Gandhi
et al. (2006) on the fractional vector yi to compute an integral random vector xi ∈ {0,1}J .

4: For each i∈ I return S1
i = {j ∈ J : xi,j = 1}.

1.
∑

j∈J xi,j ≤ d
∑

j∈J yi,je, and

2. E[xi,j] = yi,j for each i∈ I and j ∈ J .

The rest of the proof can be found in Appendix B.1. Note that Algorithm 1 is similar to the

approach taken in Torrico et al. (2021). However, we are able to obtain a better approximation

guarantee since the probabilities do not depend on the assortments. Instead, in Torrico et al. (2021)

the authors consider multinomial logit choice probabilities, which worsens the approximation to a

(1− 1/e)/2-factor.

4.2. Sequential Matches and Two-directional Interactions

We now consider the case where both sides of the market can initiate an interaction in the first

period but no pair of users see each other in the same period and, thus, matches can happen

only sequentially. This assumption holds in platforms that dynamically compute the assortments to

show within each day based on their users most recent evaluations. For instance, Tinder describes

their algorithm as “[...] a dynamic system that continuously factors in how you’re engaging with

others on Tinder through Likes, Nopes, and what’s on members’ profiles [...]”.14 Tinder, and other

platforms, have additional features that promote sequential matches by enhancing profile visibility

and allowing users to signal a heightened level of interest, such as Tinder’s “Super Like” or Bumble’s

“SuperSwipe”.

To capture this setting, we now assume that the assortments in the first period, represented

by x1 ∈ {0,1}E , include arcs in both directions, i.e., E = ~E = ~EI ∪ ~EJ . In addition, we keep the

assumptions that no pair of users see each other in the same period and that users’ assortment

cannot exceed some pre-determined size. To ease notation, given an arc e∈ E , we use ē to represent

the arc in E that covers the same pair of nodes but goes in the opposite direction, e.g., if e= (i, j),

then ē= (j, i). Then, the feasible region for the first-period decisions can be characterized as:

P 1 =

{
x1 ∈ {0,1}E :

∑
`′∈P`

x1
`,`′ ≤K`, ∀`∈ I ∪J, and x1

e +x1
ē ≤ 1, ∀e∈ E

}
. (9)

14 You can find more details on Tinder’s website.

https://www.help.tinder.com/hc/en-us/articles/7606685697037-Powering-Tinder-The-Method-Behind-Our-Matching
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The first family of constraints ensures our cardinality requirements, while the second family

guarantees that there are no simultaneous matches, as ` and `′ cannot see each other in the same

period (e.g., if x1
`,`′ = 1, then x1

`′,` = 0 and viceversa). As we show in Lemma 5, this feasible region

can be represented as the intersection of two partition matroids.

Lemma 5. The feasible region P 1 defined in (9) corresponds to the intersection of two partition

matroids.

As discussed in Section 4.1, the fact that no simultaneous matches are allowed implies that all

matches will happen in the second period following an initial like given in the first one. Hence, the

platform can still restrict attention to assortments taken from each user’s backlog in the second

period, i.e., S2
` ⊆B` for all `∈ I ∪J . Thus, the problem faced by the platform in the second period

can be formulated as:

f(B) = max
x2∈P2(B)

{ ∑
(`,`′)∈E

φ2
`,`′x

2
`,`′

}
, (10)

where the feasible region P 2(B) is defined as

P 2(B) =
{
x2 ∈ {0,1}E :

∑
`′∈P`

x2
`,`′ ≤K`, ∀`∈ I ∪J, and x2

e ≤ 1{e∈B}, ∀e∈ E
}
. (11)

Note that P 2(B) corresponds to the set of feasible assortment in which: (i) each assortment is of size

at most K`; and (ii) each user `∈ I ∪ J is included in the second-period assortment of `′ ∈P1
` only

if ` is in the backlog of `′, i.e., 1{(`,`′)∈B} = 1. Also, observe that similarly to Lemma 2 we can show

that P 2(B) is a partition matroid restricted to elements in B which implies that f is monotone,

submodular (Corollary 1), and can be evaluated efficiently.

Finally, going back to the first period, notice that we can re-formulate Problem 2 as

max
x1∈P1

{
M(x1) :=EB∼φ1x1 [f(B)]

}
(12)

where the expectation is defined as in (7). Note that this formulation is equivalent to that in (6)

and that the only difference lies on the feasible region P 1.

Our next result, formalized in Theorem 2, provides a performance guarantee for the case with

sequential matches and two-directional interactions.

Theorem 2. There exists a 1/(2+ε)-approximation algorithm for Problem 2 when Π is restricted

to two-directional policies with sequential matches, for any fixed ε > 0.

The proof of Theorem 2 relies on Algorithm 2, which presents an adaptive policy that uses an

algorithm ALG for submodular maximization under the intersection of two partition matroids. One

possible option for ALG is the standard greedy algorithm, which guarantees a factor 1/3 (Fisher et al.
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1978) in our problem. However, a better guarantee of 1/(2+ ε) can be achieved via local search (Lee

et al. 2009). Then, based on this solution and the realized backlogs B, this adaptive algorithm

maximizes the number of matches by choosing the second-period assortments that maximize the

function f(B). Note that the guarantee for this algorithm implies a guarantee for its adaptive policy

with respect to the DP formulation of the problem, since Problem (12) considers the expected value

over all possible backlog realizations. The rest of the proof can be found in Appendix B.1.

Similar to the proof of Theorem 1, the proof of Theorem 2 involves appropriate submodular opti-

mization techniques. However, the approximation factor worsens because the family of constraints

that prevents simultaneous matches creates a correlation between each pair of users. Therefore,

a provably good policy must account for the sequentiality of profile shows and the coordination

between both sides to not see each other simultaneously. One could be tempted to remove the sec-

ond family of constraints in (9), however, extra constraints are needed in P 2 to penalize the reward

of simultaneous shows which may affect the submodularity of f in the second period. Another

possibility is to consider a relaxation as in Theorem 1, however, we cannot independently apply

the dependent randomized rounding for each user because the variables are correlated due the

no-simultaneity constraint; hence another rounding procedure is needed.15

Algorithm 2 Adaptive Policy for Sequential Shows
Input: An instance of the two-sided assortment problem and an algorithm ALG for submodular

maximization subject to two partition matroids.

Output: Feasible assortments: x1, x2

1: Use ALG to obtain an approximate solution x1 of Problem (12).

2: Observe the backlogs B generated by assortments x1 according to (5)

3: Obtain x2 by solving to optimality Problem (10).

A natural concern is whether we can evaluate the functionM(·) efficiently in every iteration of

the greedy algorithm. Indeed, by using standard sampling techniques Calinescu et al. (2011), we

can obtain a (1− ε) approximation ofM(x) for any point x.

4.3. Simultaneous Matches and One-directional Interactions

So far, we have assumed that matches can only happen sequentially. However, many platforms have

recently launched games/features that involve simultaneous matches. For instance, in 2021, Tinder

introduced the “Hot Takes” game, where users that want to participate must log in within some time

window (e.g., from 6 pm to midnight) and, after answering some questions, they are paired with

15 The randomized swap rounding proposed in (Chekuri et al. 2010) also cannot be directly applied as the intended
bound for the monotone submodular objective is only for specific subsets of variables.
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another user and allowed to start a chat conversation before they both like each other and form a

match. Other platforms, such as Filteroff and The League, have implemented similar speed-dating

formats, allowing users to video chat for some time (e.g., 3 minutes) and giving them a chance to

form a match and extend their time. Thus, some platforms may consider generating simultaneous

matches as part of their design.

In this section, we extend the model discussed in Section 4.1 to enable simultaneous matches

in the first period in the one-directional case. As before, we assume (without loss of generality)

that only those users in I can initiate a sequential match. However, we now allow the platform

to select pairs of users that will simultaneously see each other in the first period and, thus, can

potentially generate a simultaneous match. To accomplish this, we enlarge the ground set to include

both directed arcs from I to J—capturing potential sequential matches—and also undirected edges

between the two sides of the market—allowing possible simultaneous matches in the first period—,

i.e., E = ~EI ∪E. As in Section 4.1, let x1 ∈ {0,1}
~EI be the set of binary variables that capture the

directed arcs selected in the first period to be part of the assortments to display, and let w1 ∈ {0,1}E

be the set of undirected edges included in the first-period assortments. Then, the feasible region for

the first-period decisions can be formalized as:

Q1 =

{
x1 ∈ {0,1}~EI , w1 ∈ {0,1}E : x1

i,j +w1
i,j ≤ 1, ∀i∈ I, j ∈ J,∑

j∈J

(
x1
i,j +w1

i,j

)
≤Ki, ∀i∈ I,

∑
I∈I

w1
i,j ≤Kj, ∀j ∈ J.

}
(13)

The first family of constraints guarantees that no profile is shown targeting both a sequential (i.e.,

x1
i,j = 1) and a simultaneous match (i.e., w1

i,j = 1). The second and third families of constraints

ensure that the assortments satisfy the cardinality requirements for sides I and J , respectively. Note

that each user j ∈ J only sees assortments involving users i ∈ I for which w1
i,j = 1 and, thus, no

sequential match is exclusively initiated by side J . As we show in Lemma 6, the region Q1 is an

intersection of two matroids.

Lemma 6. Feasible region Q1 defined in (13) corresponds to the intersection of a laminar matroid

and partition matroid.

Since we only allow for simultaneous matches in the first period, the second period problem is

exactly equivalent to that described in Section 4.1. Therefore, we can formulate the first-period

problem as:

max
(x1,w1)∈Q1

{
M(x1) +

∑
e∈E

w1
e ·β1

e

}
(14)
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where β1
e := φ1

e · φ1
ē is the probability of a simultaneous match if both users covered by e see each

other in the first period. The first term, defined as in (7), captures the expected number of sequential

matches, and the second term captures the expected number of simultaneous matches generated in

the first period.

Based on this re-formulation of Problem 2, in Theorem 3 we provide a performance guarantee for

platforms that allow simultaneous matches in the first period and one-directional interactions.

Theorem 3. There exists a 1/(2+ε)-approximation algorithm for Problem 2 when Π is restricted

to one-directional policies with sequential matches that enable simultaneous matches in the first

period, for any fixed ε > 0.

The proof of Theorem 3 follows by using the local-search algorithm for submodular maximiza-

tion over an intersection of two matroids (Lee et al. 2009). The standard greedy algorithm would

guarantee a 1/3-approximation factor in this case (Fisher et al. 1978).

4.4. Simultaneous Matches and Two-directional Interactions

The last platform design we consider is when interactions are two-directional, and matches can

happen sequentially or simultaneously in the first period. This setting captures the one used by many

platforms (including our industry partner) that daily “pre-compute” the assortments to display the

next day and allow some users to see each other in the same period, especially those with a limited

pool of potential partners.

To enable simultaneous matches in a two-directional setting, we adapt the model in Section 4.3

by expanding the ground-set to include both types of directed arcs as well as the undirected edges,

i.e., E = ~E ∪E = ~EI ∪ ~EJ ∪E. As in the previous case, let x1 ∈ {0,1}
~E and w1 ∈ {0,1}E be the set

of directed arcs and undirected edges including in the first period assortments and that may lead

to sequential and simultaneous matches, respectively. Then, the feasible region of the first-period

decisions is:16

Q1 =

{
x1 ∈ {0,1}~E, w1 ∈ {0,1}E : x1

`,`′ +x1
`′,` +w1

`,`′ ≤ 1, ∀`∈ I ∪J, `′ ∈P`,

∑
`′∈P`

(
x1
`,`′ +w1

`,`′
)
≤K`, ∀`∈ I ∪J.

}
(15)

Intuitively, for each pair i ∈ I, j ∈ J such that i ∈ Pj and j ∈ Pi, the platform has four possible

choices in the first period: (i) add j to i’s assortment to potentially get a sequential match (i.e.,

x1
i,j = 1), (ii) add i to j’s assortment to potentially get a sequential match (i.e., x1

j,i = 1), (iii)

allow i and j to see each other and potentially get a simultaneous match (i.e., w1
i,j = 1), or (iv)

do not consider these pair in the assortments to display (i.e., x1
i,j + x1

j,i +w1
i,j = 0). Moreover, the

assortments must satisfy the cardinality constraints on each side of the market.

16 Note that, in a slight abuse of notation, we use w1
i,j =w1

j,i for any pair i∈ I, j ∈ J interchangeably.
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Lemma 7. The feasible region Q1 defined in (15) corresponds to the intersection of three partition

matroids.

Since we restrict attention to simultaneous matches only in the first period, the state of the system

at the beginning of the second period can be fully characterized by the family of realized backlogs

B = {B`}`∈I∪J .17 As a result, the problem faced by the platform in the second stage is exactly

equivalent to that described in Section 4.2 and, thus, the first-period problem can be re-formulated

as:

max
(x1,w1)∈Q1

{
M(x1) +

∑
e∈E

w1
e ·β1

e

}
(16)

Based on this reformulation, in Theorem 4, we provide a performance guarantee for Problem 2

with simultaneous matches and two-directional interactions.

Theorem 4. There exists a 1/(3+ε)-approximation algorithm for Problem 2 when Π is restricted

to two-directional policies with sequential matches that enable simultaneous matches in the first

period, for any ε > 0.

Given Lemma 7, the proof of Theorem 4 uses the local-search algorithm proposed in (Lee et al.

2009). On the other hand, the greedy algorithm guarantees a 1/4-approximation factor in this

setting (Fisher et al. 1978).

5. Extensions

In this section, we analyze several extensions of our model. In Section 5.1, we extend the model in

Section 4.3 to allow for simultaneous matches in the second period. In Section 5.2, we analyze the

problem with a longer time horizon. We defer the proofs of the results in this section to Appendix C.

5.1. Simultaneous Matches in both Periods and One-Directional Interactions

As discussed in previous sections, platforms may want to enable simultaneous matches to speed

up the matching process or to implement other features such as speed/video dating. Moreover,

platforms like Bumble use sequential interactions to improve their users’ welfare, as women are

generally more picky and may get overwhelmed by the number of men reaching out.

Consider the model discussed in Section 4.3. Note that the feasible region of the problem faced

by the platform in the first period is not affected and, thus, it is captured by Q1 as in (15). In

contrast, the platform may choose in the second period to combine profiles taken from the backlog

with pairs of users that will see each other in the second period to potentially generate simultaneous

matches. To capture this, let x2 ∈ {0,1}
~E and w2 ∈ {0,1}E be the sets of arcs and edges included

17 Recall that pairs (i, j) for which w1
i,j = 1 cannot be part of the backlogs and it is ensured by the first family of

constraints in Q1.
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in the assortments of the second period. Then, given the first period decisions x1 and w1 and the

realized backlog B, the feasible region of the second period problem is given by:

Q2(x1,w1,B) =
{
x2 ∈ {0,1}~E,w2 ∈ {0,1}E : x2

e ≤ 1{ē∈B}, ∀e∈ ~E

w2
`,`′ ≤ 1−x1

`,`′ −x1
`′,`−w1

`,`′ , ∀`∈ I ∪J, `′ ∈P`,∑
`′∈P`

(
x2
`,`′ +w2

`,`′
)
≤K`, ∀`∈ I ∪J

}
The first family of constraints ensures that sequential matches can only be formed from arcs in the

backlog at the beginning of the second period. The next family of constraints guarantees that the

edges used to potentially generate simultaneous matches in the second period do not include pairs

of users where any of them saw the other in the first period. Note that an alternative representation

of this family of constraints is to require that w2
`,`′ ≤ 1{`∈P2

`′ ,`
′∈P2

`}, where P
2
` is the updated set of

potentials of user ` at the beginning of the second period according to (1). Finally, the last family

of constraints captures the assortments’ cardinality constraints.

f(x1,w1,B) = max
(x2,w2)∈Q2(x1,w1,B)

{∑
e∈~E

x2
e ·φ2

e +
∑
e∈E

w2
e ·β2

e

}
, (17)

In Proposition 5, the function f can be efficiently evaluated by solving a linear program.

Proposition 5. The function f in (17) can be efficiently evaluated solving a linear program.

As a result, the first period problem 2 can be reformulated as

max
(x1,w1)∈Q1

{
M
(
x1,w1

)
+
∑
e∈E

w1
e ·β1

e

}
, (18)

where

M(x1,w1) :=EB∼φ1x1

[
f(x1,w1,B)

]
=
∑
B⊆~E

f(x1,w1,B) · IPx1(B=B).

Note that Proposition 5 implies that the problem in the second period can be easily solved if we

know the realized backlog after the first period. Given the results in the previous sections, one

would be tempted to solve this problem by relying on similar submodular optimization techniques.

Unfortunately, as we show in Proposition 6, the function f is not submodular in B and, thus, the

analysis is significantly more complex.

Proposition 6. The function f is not submodular in B.

Despite this negative result, we provide a performance guarantee for the case when simultaneous

matches are allowed in both periods and when like probabilities on the initiating side are small.
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Theorem 5. Consider the case with one-directional sequential matches starting from side I and

simultaneous matches in both periods. Suppose that probabilities are time-independent, i.e., φ1
``′ =

φ2
``′ = φ``′ and that φij ≤ 1/n for any i∈ I, j ∈ J , where n= |I|. Denote by OPT1 the optimal solution

of Problem (14) (with simultaneous matches only in the first period) and by OPT2 the optimal value

of Problem (18) (with simultaneous matches in both stages). Then, we have

OPT1 ≥
(

1

2e
− o(1)

)
·OPT2.

More importantly, any γ-approximation algorithm for Problem (14) guarantees a γ
(

1
2e
− o(1)

)
approximation for Problem (18).

Theorem 5 implies, that when the initiating side is sufficiently picky and the market is sufficiently

large, allowing simultaneous matches in the second stage does not arbitrarily improve the optimal

expected number of matches. In other words, the majority of matches come from sequential shows.

As a result, we conjecture that the guarantees found for the case with simultaneous matches in the

first period may extend to the more general case.

5.2. Multiple Periods with Sequential Matches and One-Directional Interactions

So far, we have focused our analysis on a two-period version of the problem. As previously discussed,

this assumption is without major loss of generality since most dating platforms either (i) precompute

the assortments to show to each user daily or (ii) compute them dynamically over time based

on the state of the system, namely, the set of potentials and the backlogs. Hence, considering a

longer time horizon in the computation of the assortments does not lead to substantial benefits in

practice. Nevertheless, whether the guarantees discussed in Section 4 extend to multiple periods is

an interesting theoretical question.

To tackle this question, we focus on the simplest platform design discussed in Section 4.1, i.e.,

with sequential matches and one-directional interactions. Then, for each period t∈ [T ] = {1, . . . , T},

we assume the following sequence of events: (i) the platform selects the assortments to display to

the initiating side I such that Sti ⊆ Pti for all i ∈ I; (ii) users in I observe their assortments and

evaluate the profiles therein; (iii) the platform selects the assortments to display on the responding

side J such that Stj ⊆Btj ∪Atj, i.e., only including profiles in the backlog at the beginning of period

t or those newly added in the current period;18 (iv) users in J observe their assortments, evaluate

the profiles therein, and matches get realized; and (v) the platform updates the sets of backlogs and

potentials according to (1).

In Theorem 6, we show that the performance guarantee provided in the two-period case (in

Theorem 1) extends to multiple periods. Specifically, we show that there exists a semi-adaptive

18 Recall that Atj =
{
i∈ I : j ∈ Sti , Φti,j = 1

}
represents the set of users in I that liked j ∈ J in period t.
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policy, i.e., a policy that is non-adaptive for the initiating side and adaptive for the responding side

(by selecting profiles from the backlog), that achieves a 1−1/e approximation factor relative to the

optimal adaptive policy that results from solving the dynamic program presented in Appendix A.1.

Theorem 6. There exists a semi-adaptive policy that achieves a 1− 1/e approximation factor

with respect to the optimal adaptive policy in the multi-period version of the setting with sequential

matches and one-directional interactions.

Based on this result, we conjecture that the performance guarantees provided for the other plat-

form designs also extend to the multi-period versions of the problem.

6. Experiments

In this section, we evaluate the performance of the algorithms described above using real data and

assess whether enabling simultaneous matches leads to a significant improvment.

6.1. Data

We use a dataset obtained from our industry partner to perform our experiments. This dataset

includes all heterosexual users from Houston, TX that logged in between February 14 and August

14, 2020, and includes all the observable characteristics displayed in their profiles for each user in

the sample, namely, their age, height, location, race, and religion. It also includes an attractiveness

score—or simply score—that depends on the number of likes received and evaluations received in

the past.19 Finally, the dataset includes all the profiles that each user evaluated between February

14 and August 14, 2020, including the decisions made (like or dislike), which other profiles were

part of the assortment, and relevant timestamps. As a result, we have a panel of observations, and

we can fully characterize each profile evaluated by each user in the sample.

Using this dataset, for any pair of users `∈ I ∪ J and `′ ∈P1
` , we compute the probability that `

likes `′ using the panel regression model described in detail in Appendix D.1. Since we assume that

like probabilities are independent across periods (i.e., we assume that there is no effect of the history

on the like behavior of users),20 we estimate the like probabilities considering a logit model with

fixed effects at the user level. In addition, we control for all the observable characteristics available

in the data, namely, the characteristics of the profile evaluated and the interaction with those of the

user evaluating. In Table 3 (see Appendix D.1), we report the estimation results. Then, by using

the estimated coefficients and users’ observable characteristics, we predict the probabilities φ`,`′ for

19 This score is measured on a scale from 0 to 10, where 10 represents the most attractive profiles and 0 the least
attractive ones.
20 Rios et al. (2023) find that the number of matches obtained in the recent past has a significant negative effect on
users’ future like/dislike decisions. However, the authors show that the primary source of improvement comes from
taking into account the market’s two-sidedness and choosing better assortments. Hence, we decided to focus on the
latter and simplify the estimation of probabilities.
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all ` ∈ I ∪ J and `′ ∈ P1
` . We perform our simulations considering a random sample of the dataset

described above to reduce the computational time.21

6.2. Benchmarks

To assess the performance of the proposed algorithms, which we refer to as Global Greedy, we

compare them with several benchmarks:22

1. Local Greedy: for each user, select the subset of profiles that maximizes their expected number

of matches, i.e., St` = arg maxS⊆P`\
⋃t−1
τ=1 S

τ
`

:|S|≤K`

{∑
`′∈S φ``′ ·

(
1{`′∈Bt`}+φ`′` ·1{`′ /∈Bt`}

)}
2. Perfect Matching (PM): in each period t ∈ [T ], solve the perfect match problem (including

possible initial backlogs) described in Section 3.2 and formalized in Appendix D.2.

3. Dating Heuristics: we adapt the Dating Heuristic (DH) described in Rios et al. (2023) to our

setting. In Appendix D.3 we describe in detail how these heuristics work and how we adapt them

to our setting. To assess the impact of considering simultaneous matches when making first period

decisions, we consider a three special cases of Algorithm 3 (in Appendix D.3):

(a) None: when solving Problem (27) to obtain the first period assortments, we avoid con-

sidering simultaneous matches in both periods, i.e., we force wt`,`′ = 0 for all t ∈ {1,2} and all

`∈ I ∪J, `′ ∈P1
` .

(b) First: when solving Problem (27) to obtain the first period assortments, we avoid consid-

ering simultaneous matches in the second period, i.e., we force w2
`,`′ = 0 for all `∈ I ∪J, `′ ∈P1

` .

(c) Both: when solving Problem (27) to obtain the first period assortments, we consider simul-

taneous matches in both periods.

Moreover, we consider two variants of Global Greedy: (i) None and (ii) First. As for DH, in the

former, we consider no simultaneous matches when choosing the first-period assortments (i.e., we use

Algorithm 2 directly). In the latter, we extend this algorithm to allow simultaneous matches in the

first period. Finally, we compare all these methods with the UB obtained from solving Problem (27).

6.3. Results

For each benchmark, we perform 100 simulations where, in each period, (i) we choose the assortment

to show to each user considering K` = 3 for all `∈ I ∪ J , (ii) we simulate the decisions of the users

based on their like probabilities, and (iii) we update the state of the system before moving on to

the next period. The results are summarized in Figure 1, where we report the average number of

21 In Table 4 in Appendix D.1, we report several summary statistics of the sample, including the number of users,
their average score, the average number of potentials available, their average backlog size, and their average like
probabilities.
22 We also tested other benchmarks such as Naive, Random, and also our partner’s algorithm. However, since the
results reported here significantly outperform these other benchmarks, we decided to omit them and focus on the
results of the algorithms proposed above.
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Figure 1 Matches by Benchmark

matches generated by each benchmark. In Figure 1a, we report the results considering no initial

backlog for all users, i.e., B1
` = ∅ for all `∈ I ∪J , while in Figure 1b, we consider the actual backlogs

as in August 16, 2020.

First, we observe that the performance of PM and Local Greedy are considerably better than

their worst-case performance. Second, we observe that Global Greedy largely outperforms these

benchmarks. Moreover, we find no significant differences in the number of matches obtained when

considering simultaneous matches in the first period (i.e., comparing Global Greedy None vs. First).

These results suggest that allowing simultaneous matches in the first period does not make a sig-

nificant difference. Third, we find that DH and its variants outperform all the other benchmarks.

Indeed, as we show in Proposition 7, this result holds more generally in the case of one-directional

interactions and sequential matches.23

Proposition 7. The DH algorithm has a performance guarantee at least as good as that of

Algorithm 1 for the case with one-directional interactions and sequential matches.

Finally, we observe that if we only allow sequential matches (as in DH-None), the performance is

relatively similar when both simultaneous and sequential matches are permitted. Indeed, when we

assume no initial backlogs, DH-None achieves 90.56% of the matches generated by DH, while this

number increases to 96.46% when considering initial backlogs. In addition, we observe that DH-First

and DH-Both lead to almost identical results, suggesting that considering simultaneous matches in

the second period while making first-period decisions plays no significant role. These results suggest

that most matches are generated either sequentially and that considering simultaneous matches in

the second period when choosing first-period assortments plays no significant role. Hence, these

simulation results support the conjecture that the performance guarantees obtained for the case

with simultaneous matches in the first period are similar to those for the general problem.

23 A similar result can be provided for the other platform designs.
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7. Conclusions
We theoretically study the two-sided assortment optimization problem that many dating platforms

face when deciding the subset of profiles to show to each user in each period to maximize the

expected number of matches. Motivated by the wide variaty of apps, we study different platform

designs, varying (i) which side of the market can start an interaction, and (ii) whether the platform

allows simultaneous matches. Using tools from submodular optimization, we provide performance

guarantees for each variant of the problem. In addition, we show theoretically and through simula-

tions that the improvement obtained from considering simultaneous matches is limited.

Managerial Implications. Our results have several interesting managerial implications. First, our

results show that natural approaches such as local greedy or non-adaptive policies are not suitable

to our problem due to the two-sided nature of the problem. Hence, platforms should avoid these

types of policies. Second, our results suggest that enabling simultaneous matches does not lead

to a major improvement while significantly increasing the complexity of the problem. Third, our

results show that limiting the analysis to policies with one period of lookahead is enough to capture

most of the matches, also simplifying the analysis significantly. Therefore, platforms should focus

on devising and improving algorithms that tackle the sequential variants of the problem with one

period of lookahead. Finally, although we focus on dating platforms, we believe that many of these

insights would translate to other two-sided assortment problems such as in freelancing, ride-sharing,

among others.

Future Work. There are many exciting directions for future research. First, our results suggests

that the constant factor approximation derived for the case with both sequential and simultaneous

matches can be improved. Second, we conjecture that the performance guarantee of 1/3 also applies

to the general case (multi-period with sequential and simultaneous matches in each period), so it

would be worth exploring and confirming that this is true. Third, it would be interesting to extend

our model to the case when like probabilities depend on the assortment shown, as this may be

relevant in other markets where users can get at most one match (e.g., for a given date, hosts on

Airbnb can match with at most one guest). Finally, it is worth studying performance guarantees

when users log in with some known probability.

References
Adamczyk M (2011) Improved analysis of the greedy algorithm for stochastic matching. Information Pro-

cessing Letters 111(15):731–737.

Agrawal S, Ding Y, Saberi A, Ye Y (2010) Correlation robust stochastic optimization. Proceedings of the

twenty-first annual ACM-SIAM symposium on Discrete Algorithms, 1087–1096 (SIAM).

Aouad A, Saban D (2022) Online assortment optimization for two-sided matching platforms. Management

Science 0(0).



Authors’ names blinded for peer review
30 Article submitted to Management Science; manuscript no.

Arnosti N, Shi P (2020) Design of lotteries and wait-lists for affordable housing allocation. Management

Science 66(6):2291–2307.

Ashlagi I, Krishnaswamy A, Makhijani R, Saban D, Shiragur K (2022) Technical note - assortment planning

for two-sided sequential matching markets. Operations Research 70(5):2784–2803.

Bansal N, Gupta A, Li J, Mestre J, Nagarajan V, Rudra A (2012) When lp is the cure for your matching

woes: Improved bounds for stochastic matchings. Algorithmica 63:733–762.

Berbeglia G, Joret G (2015) Assortment Optimisation Under a General Discrete Choice Model: A Tight

Analysis of Revenue-Ordered Assortments.

Besbes O, Castro F, Lobel I (2021) Surge pricing and its spatial supply response. Management Science

67(3):1350–1367.

Besbes O, Fonseca Y, Lobel I, Zheng F (2023) Signaling competition in two-sided markets.

Blanchet J, Gallego G, Goyal V (2016) A Markov chain approximation to choice modeling. Operations

Research 64(4):886–905.

Brubach B, Grammel N, Ma W, Srinivasan A (2021) Improved guarantees for offline stochastic matching

via new ordered contention resolution schemes. Advances in Neural Information Processing Systems

34:27184–27195.

Calinescu G, Chekuri C, Pal M, Vondrák J (2011) Maximizing a monotone submodular function subject to

a matroid constraint. SIAM Journal on Computing 40(6):1740–1766.

Caro F, Gallien J (2007) Dynamic assortment with demand learning for seasonal consumer goods. Manage-

ment Science 53(2):276–292.

Chekuri C, Vondrák J, Zenklusen R (2010) Dependent randomized rounding via exchange properties of

combinatorial structures. 2010 IEEE 51st Annual Symposium on Foundations of Computer Science,

575–584 (IEEE).

Chen N, Immorlica N, Karlin AR, Mahdian M, Rudra A (2009) Approximating matches made in heaven.

Automata, Languages and Programming, 266–278 (Springer Berlin Heidelberg).

Costello KP, Tetali P, Tripathi P (2012) Stochastic matching with commitment. Automata, Languages, and

Programming: 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceed-

ings, Part I 39, 822–833 (Springer).

Davis JM, Gallego G, Topaloglu H (2014) Assortment Optimization Under Variants of the Nested Logit

Model. Operations Research 62(2):250–273.

Erdős P, Rényi A (1964) On random matrices. Publ. Math. Inst. Hungarian Academy of Sciences 8:455–461.

Erdős P, Rényi A (1968) On random matrices ii. Studia Sci. Math. Hungar 3:459–464.

Farias VF, Jagabathula S, Shah D (2013) A Nonparametric Approach to Modeling Choice with Limited

Data. Management Science 59(2):305–322.



Authors’ names blinded for peer review
Article submitted to Management Science; manuscript no. 31

Feldman J, Mehta A, Mirrokni V, Muthukrishnan S (2009) Online stochastic matching: Beating 1-1/e. 2009

50th Annual IEEE Symposium on Foundations of Computer Science, 117–126 (IEEE).

Fisher ML, Nemhauser GL, Wolsey L (1978) An analysis of approximations for maximizing submodular set

functions–ii. Polyhedral combinatorics .

Gamlath B, Kale S, Svensson O (2019) Beating greedy for stochastic bipartite matching. Proceedings of the

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2841–2854 (SIAM).

Gandhi R, Khuller S, Parthasarathy S, Srinivasan A (2006) Dependent rounding and its applications to

approximation algorithms. Journal of the ACM (JACM) 53(3):324–360.

Golrezaei N, Nazerzadeh H, Rusmevichientong P (2014) Real-Time Optimization of Personalized Assort-

ments. Management Science 60(6):1532–1551.

Goyal V, Udwani R (2023) Online matching with stochastic rewards: Optimal competitive ratio via path-

based formulation. Operations Research 71(2):563–580.

Halaburda H, Piskorski MJ, Yildirim P (2018) Competing by Restricting Choice: The Case of Search Plat-

forms. Management Science 64(8):3574–3594.

Hikima Y, Akagi Y, Kim H, Kohjima M, Kurashima T, Toda H (2021) Integrated optimization of bipartite

matching and its stochastic behavior: New formulation and approximation algorithm via min-cost flow

optimization. Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, 3796–3805.

Immorlica N, Lucier B, Manshadi V, Wei A (2022) Designing approximately optimal search on matching

platforms. Management Science Forthcoming.

Jeloudar M, Lo I, Pollner T, Saberi A (2021) Decentralized matching in a probabilistic environment. Pro-

ceedings of the 22nd ACM Conference on Economics and Computation, 635–653.

Kanoria Y, Saban D (2021) Facilitating the search for partners on matching platforms. Management Science

67(10):5990–6029.

Karp R, Vazirani U, Vazirani V (1990) An optimal algorithm for online bipartite matching. Proceedings of

the 22nd Annual ACM Symposium on Theory of Computinh.

Kök A, Fisher M, Vaidyanathan R (2015) Retail Supply Chain Management: Quantitative Models and Empir-

ical Studies, 175–236 (Springer US).

Lee J, Sviridenko M, Vondrák J (2009) Submodular maximization over multiple matroids via generalized

exchange properties. International Workshop on Approximation Algorithms for Combinatorial Opti-

mization, 244–257 (Springer).

Manshadi V, Rodilitz S (2022) Online policies for efficient volunteer crowdsourcing. Management Science

68(9):6572–6590.

Manshadi V, Rodilitz S, Saban D, Suresh A (2022) Online algorithms for matching platforms with multi-

channel traffic.



Authors’ names blinded for peer review
32 Article submitted to Management Science; manuscript no.

Manshadi VH, Gharan SO, Saberi A (2012) Online stochastic matching: Online actions based on offline

statistics. Mathematics of Operations Research 37(4):559–573.

Mehta A, Panigrahi D (2012) Online matching with stochastic rewards. 2012 IEEE 53rd Annual Symposium

on Foundations of Computer Science, 728–737 (IEEE).

Mehta A, et al. (2013) Online matching and ad allocation. Foundations and Trends® in Theoretical Com-

puter Science 8(4):265–368.

Rios I, Saban D, Zheng F (2023) Improving match rates in dating markets through assortment optimization.

Manufacturing & Service Operations Management 25(4):1304–1323.

Rochet JC, Tirole J (2003) Two-Sided Markets. Journal of the European Economic Association 990–1029.

Rusmevichientong P, Shen ZJM, Shmoys DB (2010) Dynamic Assortment Optimization with a Multinomial

Logit Choice Model and Capacity Constraint. Operations Research 58(6):1666–1680.

Rusmevichientong P, Shmoys D, Tong C, Topaloglu H (2014) Assortment optimization under the multinomial

logit model with random choice parameters. Production and Operations Management 23(11):2023–2039.

Rusmevichientong P, Sumida M, Topaloglu H (2020) Dynamic assortment optimization for reusable products

with random usage durations. Management Science 66(7):2820–2844.

Sauré D, Zeevi A (2013) Optimal Dynamic Assortment Planning with Demand Learning. Manufacturing &

Service Operations Management 15(3):387–404.

Shi P (2022a) Optimal matchmaking strategy in two-sided marketplaces. Management Science 0(0):null.

Shi P (2022b) Optimal priority-based allocation mechanisms. Management Science 68(1):171–188.

Talluri K, van Ryzin G (2004) Revenue Management Under a General Discrete Choice Model of Consumer

Behavior. Management Science 50(1):15–33.

Torrico A, Carvalho M, Lodi A (2021) Multi-agent assortment optimization in sequential matching markets.

Vondrák J (2008) Optimal approximation for the submodular welfare problem in the value oracle model.

Proceedings of the 40th Annual ACM Symposium on the Theory of Computing (STOC), 67–74.

Wang R, Sahin O (2018) The Impact of Consumer Search Cost on Assortment Planning and Pricing. Man-

agement Science 64(8):3649–3666.



Authors’ names blinded for peer review
Article submitted to Management Science; manuscript no. 33

Appendix A: Appendix to Section 3

A.1. Dynamic programming formulation

Let µt``′ = 1 if a match between users ` and `′ happens in period t, and µt``′ = 0 otherwise. As discussed in

Section 3, µt`,`′ = 1 if and only if one of the following three (disjoint) events takes place: (i) {Φt
``′ = 1, `′ ∈Bt`},

(ii) {Φt
`′` = 1, `∈Bt`′}, or (iii) {Φt

``′ = Φt
`′` = 1}.

Given a set of potentials ~P = {P`}`∈I∪J and a set of backlogs ~B= {B`}`∈I∪J , Problem 2 can be formulated

as the following dynamic program:24

V t(~P, ~B) = max
S`∈P`

|S`|≤K`∀`∈I∪J

E

 ∑
`∈I∪J

∑
`′∈S`

µt``′ ·1{`′∈B`}+
1

2
·µt`,`′ ·1{`/∈B`}+V t+1

(
~P \
(
~S ∪ ~R

)
, ~B∪ ~A \ ~S

)
V T+1(~P, ~B) = 0

where ~A= {A`}`∈I∪J and ~R= {R`}`∈I∪J are such that A` and R` represent the sets of users that liked and

disliked ` in that period, i.e.,

A` = {`′ ∈P` : `∈ S′`,Φ`′` = 1}

R` = {`′ ∈P` : `∈ S′`,Φ`′` = 0}

Note that the first term in the summation (µt``′ ·1{`′∈B`}) captures sequential matches, i.e., matches produced

by cases (i) and (ii) mentioned above, while the second term (µt`,`′1{`/∈B`}) captures simultaneous matches

generated produced by case (iii).25 The latter term is multiplied by 1/2 to avoid double-counting simultaneous

matches.

A.2. Complexity

Proof of Proposition 1. To show that the problem is NP-hard, we show that we can reduce the set covering

problem (SCP) to ours. An instance of SCP consists of a set of elements U , a collection C = {C1, . . . ,Cm}
such that Ci ⊆U for all i ∈ [m] and

⋃
i∈[m]Ci = U , and an integer k. The decision problem is whether there

exists a cover of size at most k <m, i.e., a subset C⊆C such that |C| ≤ k and U ⊆
⋃
C∈CC.

Given an instance of SCP , we construct the following instance of our problem. We consider two sides of

the market, I = {1, . . . ,m} and J = U ∪
⋃m

i=1Di, where Di is a set of unique duplicates of the elements of

Ci. Each user i∈ I has an initial set of potentials Pi =Ci∪Di, while each user j ∈ J is such that Pj = I. For

each i∈ I, we assume that

φij =


1 if j ∈Ci

1
m·c̄·|Ci|

if j ∈Di

0 otherwise

where c̄= maxi∈[m] |Ci|. In contrast, we assume that φj,i = 1 for all j ∈ J and i∈Pj . Finally, we assume that

the assortment size of each user i ∈ I is Ki = |Ci|, while the assortment size for each user j ∈ J is Kj = 1,

and we assume no initial backlogs, i.e., B` = ∅ for all `∈ I ∪ J .
We show that a set cover exists for the instance (U ,C, k) if the number of matches obtained from the

instance of the assortment problem described above is at least |U|+ (m−k)

m·c̄ .

24 In a sloght abuse of notation, we assume that the set operations in V t+1(·) are component-wise, i.e., ~P \
(
~S ∪ ~R

)
=

{P` \ (S` ∪R`)}`∈I∪J and ~B∪ ~A \ ~S = {B` ∪A` \S`}`∈I∪J .
25 This holds because it cannot happen that `∈B`′ and `′ ∈B`.



Authors’ names blinded for peer review
34 Article submitted to Management Science; manuscript no.

⇒ Suppose that there exists a set cover of size k, C = {Ci1 , . . . ,Cik}. for convenience, let I ′ = {i1, . . . , ik}

the set of indices that provide the cover C. Then, we construct a solution for the assortment problem that

achieves an expected number of matches of at least |U| + (m−k)

m·c̄ as follows. Each user i ∈ I ′ observes an

assortment S1
i = Ci in the first period, and an empty assortment in the next period. Each user i ∈ I \ I ′

observes an assortment S1
i =Di in the first period, and an empty assortment in the second period. Finally,

each user j ∈ J observes an empty assortment in the first period and, in the second period, an assortment

containing one of the users that saw them in the first period (if any), i.e., S2
j ∈ {i∈ I : j ∈ Si}. If multiple

users in I see the same j ∈ J , then we assume that j sees each of them back with probability 1/ |i∈ I : j ∈ S1
i |.

First, note that the cardinality constraints are satisfied, since S1
i is either Ci or Di, both of which have

cardinality |Ci|=Ki, and users j ∈ J see at most one profile in the second period. Moreover, note that all

assortments St` ⊆ P` for all ` ∈ I ∪ J , and thus they are feasible. Second, since C is a cover, we know that

U ⊆
⋃
C∈CC, and thus each element in U is seen by at least one user i∈ I. Since φi,j = 1 and φj,i = 1 for i∈ I

and j ∈Ci, we know that each j ∈ U will be liked by someone in I ′, and that they will like back at least one

of the users that saw them. Hence, all users in U will get one match with users in the set I ′. Finally, note

that all users i∈ I \ I ′ observe assortments S1
i =Di, and like each of these profiles with probability 1

m·c̄·|Ci|
.

Then, these users are liked back with probability 1, since φji = 1 for all j ∈ J, i∈Pj and the fact that these

duplicates are seen by at most one user. Hence, the users i ∈ I \ I ′ obtain a expected number of matches

equal to ∑
j∈St

i

1

m · c̄ · |Ci|
· 1 = |Di| ·

1

m · c̄ · |Ci|
=

1

m · c̄
,

where the first equality follows from Sti =Di and the second follows from Di been a duplicate of the set Ci,

and thus |Di|= |Ci|. Hence, the expected number of matches generated by users in I \ I ′ is (m−k) · 1
m·c̄ , and

thus the total expected number of matches is |U|+ (m−k)

m·c̄ .

⇐ Suppose that there exists a solution to the assortment problem S̄ =
(
{Si}i∈I ,{Sj}j∈J

)
that produces

an expected number of matches of at least |U| + (m−k)

m·c̄ . First, note that the only way to obtain at least

|U| matches is by covering all the elements of U , since every user in J sees at most one profile (and thus

belongs to at most one match), and every user in J \U generates a match with probability at most 1
m·c̄·c � 1,

where c= mini∈[m] {Ci}. Hence, we know that {S1
i }i∈I is a cover of U . It remains to show that we can find

a k elements of {S1
i }i∈I that are enough to cover U . To see this, suppose that this is not the case, i.e., we

need at least k + 1 elements in {S1
i }i∈I to cover U . Then, there are less than m − k users in I who see

assortments containing exclusively duplicated elements, i.e., |{i∈ I : S1
i ⊆Di}|<m− k. Then, the expected

number of matches generated by these users is strictly less than (m−k) · 1
m·c̄ . Finally, since every element in

U generates at most one match in expectation, we conclude that the total number of matches is strictly less

than |U|+ (m− k) · 1
m·c̄ , which contradicts our hypothesis.

A.3. Offline Optimum versus Online Optimum

Consider the following instance taken from Chen et al. (2009): There are n users in I and n users in J . The

probabilities are all φi,j = (2 logn)/n and φj,i = 1 for all j ∈ J, i ∈ I. Therefore βe = 2 logn/n for each edge.

Consider 1 stage and K` = 1. According to Erdős and Rényi (1964, 1968), with constant probability there
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exists a perfect matching which means that the value of the omniscient optimum is c · n for some constant

c > 0. On the other hand, a one-directional policy will show Sik = {jk} which will produce a matching of

expected size 2 logn and this is optimal. Therefore, the gap is O( logn
n

).

A.4. Natural Approaches

Proof of Proposition 2. Suppose that there are n users on each side of the market, i.e., I = {i1, . . . , in}

and J = {j1, . . . , jn}. In addition, suppose that Pi = J for every i ∈ I, Pj = I for every j ∈ J . Let us set

the probabilities: β1
ij = 1 for j = j1 and for all i ∈ I, β1

ij = 1− ε for all i ∈ I and j 6= j1, while β2
ij = 0 for

all i ∈ I ∪ J, j ∈ Pi. In this setting, the greedy policy will chose S1
i = {j1} for every user i, and therefore

only one match will take place in expectation. In contrast, an optimal solution is to assign S1
ik

= {jk}, which

leads to 1 + (n− 1)(1− ε) matches in expectation. Then, the performance of the greedy policy is given by

1/(1 + (n− 1)(1− ε))→ 0, as n→∞ for ε sufficiently small.

Proof of Proposition 3. Suppose that |I|= 2n, |J |= 2, that P1
i = J for every i∈ I, P1

j = I for every j ∈ J ,

and that φtij = p while φtji = q for all i ∈ I, j ∈ J , and t ∈ {1,2}. Then, it is easy to see that the sequential

perfect match policy leads to 4pq matches in expectation. On the other hand, consider the policy where: (i)

In t= 1, {i1, . . . , in} see j1, {in+1, . . . , i2n} see j2, j1 sees i2n and j2 sees i1, and (ii) in t= 2, {i1, . . . , in} see

j2, {in+1, . . . , i2n} see j1, j1 sees any profile that liked her in t= 1, and same for j = 2. Given this policy, the

matches (i2n, j1) and (i1, j2) happen with probability pq each. On the other hand, j1 matches with someone

in {i1, . . . , in} with probability (1− (1−p)n)q, and the same for j2 matching with someone in {in+1, . . . , i2n}.

Then, the total expected number of matches is 2pq + 2q(1− (1− p)n), which is optimal for this instance.

Then, the sequential perfect match policy achieves a performance of 4pq/(2q(p+ 1− (1− p)n))→ 2/(1 +n)

when p→ 0, and since 2/(1 +n)→ 0 when n→∞, we conclude the proof.

Proof of Proposition 4. Consider the following instance: I = {1, . . . , n}, J = {j}, Ki =Kj = 1, φi,j = 1/n

and φji = 1 for all i∈ I. If we only allow sequential shows, then any deterministic non-adaptive policy would

have an expected value of at most 1/n, since we are choosing pairs i, j in advance without looking at the

backlogs. However, the optimal adaptive policy consists of: showing j to every i∈ I in the first stage, and if

there is at least one agent i∈ I that likes j then show this agent to j in the second stage. The optimal value

in this case is the probability that j is liked by at least one person, i.e., 1− (1− 1/n)n→ 1− 1/e. If we allow

simultaneous shows, the ratio is still arbitrarily close to zero.

Appendix B: Appendix to Section 4

B.1. Missing Proofs in Section 4.1

Proof of Lemma 1. The set of potentials P1
i for all i∈ I partitions the set of edges E = ~EI and the budget

of each part corresponds to Ki.

Proof of Lemma 2. Similar to Lemma 1 but the partition is restricted to the corresponding elements in

the backlog.

Proof of Lemma 3. Let us prove then thatM(x) is a non-negative monotone submodular function. Recall

that f is a non-negative, monotone submodular function due to Corollary 1. Since f is non-negative, then
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M is also non-negative. For x ∈ {0,1}E , denote by supp(x) = {a ∈ E : xal = 1} the support of x. Then, we

can writeM as follows

M(x) =
∑

B⊆supp(x)

f(B)
∏
a∈B

φ1
a

∏
a∈supp(x)\B

(1−φ1
a)

On the other hand, for any e /∈ supp(x) we have

M(x+1{e}) = φ1
e ·

∑
B⊆supp(x)

f(B+ e)
∏
a∈B

φ1
a

∏
a∈supp(x)\B

(1−φ1
a)

+ (1−φ1
e) ·

∑
B⊆supp(x)

f(B)
∏
a∈B

φ1
a

∏
a∈supp(x)\B

(1−φ1
a)

Therefore,

M(x+1{e})−M(x) = φ1
e

∑
B⊆supp(x)

[f(B+ e)− f(B)]
∏
a∈B

φ1
a

∏
a∈supp(x)\B

(1−φ1
a)

Since f is monotone, then f(B + e)− f(B)≥ 0 for all B ⊆ supp(x) and e /∈ supp(x), which implies M(x+

1{e})−M(x)≥ 0.

Now, let us prove thatM is submodular. Consider any x∈ {0,1}E and e, e′ /∈ supp(x). Our goal is to show

thatM(x+1{e})−M(x)≥M(x+1{e}+1{e′})−M(x+1{e′}). Note that we have the following expression

forM(x+1{e}+1{e′})

M(x+1{e}+1{e′}) = φ1
eφ

1
e′ ·

∑
B⊆supp(x)

f(B+ e+ e′)
∏
a∈B

φ1
a

∏
a∈supp(x)\B

(1−φ1
a)

+φ1
e′(1−φ1

e) ·
∑

B⊆supp(x)

f(B+ e′)
∏
a∈B

φ1
a

∏
a∈supp(x)\B

(1−φ1
a)

+φe(1−φ1
e′) ·

∑
B⊆supp(x)

f(B+ e)
∏
a∈B

φ1
a

∏
a∈supp(x)\B

(1−φ1
a)

+ (1−φ1
e′)(1−φ1

e) ·
∑

B⊆supp(x)

f(B)
∏
a∈B

φ1
a

∏
a∈supp(x)\B

(1−φ1
a)

Analogously, we can computeM(x+1{e}) andM(x+1{e′}). By deleting common terms, we can obtain the

following

M(x+1{e})−M(x)−M(x+1{e}+1{e′}) +M(x+1{e′})

= φ1
eφ

1
e′ ·

∑
B⊆supp(x)

[f(B+ e)− f(B)− f(B+ e+ e′) + f(B+ e′)]
∏
a∈B

φ1
a

∏
a∈supp(x)\B

(1−φ1
a),

from which submodularity follows due to submodularity of f .

Proof of Lemma 4. Consider a feasible solution x1 ∈ {0,1}E for the optimization problem (6), that is,∑
j∈J x

1
(i,j) ≤K for every i∈ I. Let z= φ1x1. Observe that∑

j∈J:φ1
ij
>0

zij/φ
1
ij =

∑
j∈J:φ1

ij
>0

x1
(i,j) ≤Ki

for every i∈ I, and za = x1
aφ

1
a ≤ φ1

a for every a∈ E . Therefore z is a feasible solution for the problem (8a)-(8c).

Since the objective value of x1 in (6) is equal to the objective of z in (8a)-(8c), we conclude the lemma.
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Proof of Theorem 1. Thanks to condition (1) of the randomized rounding algorithm, for each i ∈ I we

have
∑

j∈J x̂ij ≤
⌈∑

j∈J xij

⌉
= d
∑

j∈J:φij>0 z̃ij/φ
1
ije ≤Ki, where the last inequality holds since Ki is integral

and z̃ satisfies constraint (8b). Therefore, our algorithm gives a feasible solution for Problem (6). We now

analyze the approximation guarantee.

EB∼φ1x̂ [f(B)] =
∑
B⊆E

f(B) · IPx̂ (B=B)

=
∑
B⊆E

f(B) ·Ex̂

[∏
a∈B

φ1
ax̂a

∏
a/∈B

(1−φ1
ax̂a)

]
=
∑
B⊆E

f(B) ·
∏
a∈B

φ1
aEx̂[x̂a]

∏
a/∈B

(1−φ1
aEx̂[x̂a])

=
∑
B⊆E

f(B) ·
∏
a∈B

φ1
a ·
z̃a
φ1
a

∏
a/∈B

(1−φ1
a ·
z̃a
φ1
a

) =M(z̃),

where the second equality comes from the fact that x̂i is independent from x̂i′ for every i, i′ ∈ I with i 6= i′

and the third equality comes from condition 2 of the randomized rounding procedure. Finally, Lemma 4

states that OPT′ ≥OPT, where OPT′ is the optimal value of Problem (8a)-(8c), so we conclude the proof

by using Corollary (2).

B.2. Missing Proofs in Section 4.2

Proof of Lemma 5. Our ground set of elements is E = ~EI ∪ ~EJ . The first partition consists of the following

parts: E` = {e : e= (`, `′) for every `′ ∈P`} for all `∈ I∪J . It is easy to check that E =∪`∈I∪JE` and E`∩E`′ = ∅

for every `, `′ such that ` 6= `′. Finally, the budget for each part E` is K`. Now, let us construct the second

partition matroid. For every pair i ∈ I and j ∈ J , we define a part Ei,j as the set {(i, j), (j, i)}. Indeed this

forms a partition of E . Finally, the budget for each part Ei,j is 1.

Proof of Theorem 2. Consider the formulation (6) of Problem 2. Since x1 is a 0-1 vector and M(·) is

monotone submodular over elements in E , we know that a vanilla greedy algorithm achieves a 1/(1 + r)-

approximation for the problem of maximizing a monotone submodular function over the intersection of

r matroids Fisher et al. (1978) and local-search guarantees a factor of 1/(r + ε) for any fixed ε > 0 (Lee

et al. 2009). By Lemma 4.2 we know that r = 2, and thus the guarantee is 1/3 for greedy and 1/(2 + ε) for

local-search.

B.3. Missing Proofs in Section 4.3

Before proving the next result, let us consider the following definition:

Definition 4 (Laminar Matroid). A family X ⊆ 2E over a ground set of elements E is called laminar

if for any X,Y ∈ X we either have X ∩ Y = ∅, X ⊆ Y or X ⊆ Y . Assume that for each element u ∈ E there

exists some A∈X such that A3 u. For each A∈X let c(A) a positive integer associated with it. A laminar

matroid I is defined as I = {A⊆E : |A∩X| ≤ c(X) ∀X ∈X}.

Proof of Lemma 6. First, let us defined our laminar family X . For every pair i∈ I, j ∈ J consider Xi,j =

{(i, j),{i, j}}, also for every i ∈ I consider Yi = {(i, `) : ` ∈ Pi} ∪ {{i, `} : ` ∈ Pi}. Indeed, this is a laminar

family, two sets of type X do not intersect and two sets of type Y also do not intersect. Sets of type X

and Y intersect only if they correspond to the same i ∈ I in which case Xi,j ⊆ Yi. Finally, for every Xi,j we
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have c(Xi,j) = 1 and for each Yi we have c(Yi) =Ki. Therefore, for this laminar family S and values c(·) we

have that I = {A⊆ E : |A∩X| ≤ c(X) ∀X ∈ S} coincides with feasible region Q1. The partition matroid is

defined by the following parts: for each j ∈ J consider Ej = {{i, j} : i∈Pj} and E0 = E \
⋃
j∈J Ej . The budget

for each part Ej is Kj and for E0 is |E0|.

Proof of Theorem 3. Similar to the proof of Theorem 2.

B.4. Missing Proofs in Section 4.4

Proof of Lemma 7. As in Lemma 5, the first partition consists of the following parts: Ei = {{(i, j),{i, j}} :

for every j ∈ Pi} for all i ∈ I and E0 = E \ ∪i∈IEi. It is easy to check that E = E0 ∪
⋃
i∈I E` and E` ∩ E`′ = ∅

for every `, `′ ∈ I ∪{0} such that ` 6= `′. Finally, the budget for each part Ei is Ki for every i∈ I and |E0| for

E0. Analogously, we can construct the second partition matroid by considering parts: Eij = {{(j, i),{i, j}} :

for every i∈Pj} for all j ∈ J and E0 = E \∪j∈JEj . The final partition is composed by the following parts: For

every pair i ∈ I and j ∈ J , we define a part Ei,j as the set {(i, j), (j, i),{i, j}}. Indeed this forms a partition

of E . Finally, the budget for each part Ei,j is 1.

Proof of Theorem 4. Similar to the proof of Theorem 2.

Appendix C: Appendix to Section 5

C.1. Simultaneous Matches in both Periods and One-Directional Interactions

Proof of Proposition 5. Given a realized backlog B= {Bl}`∈I∪J and a set of potentials P, define a bipar-

tite graph with two sides U,V with U = I ∪ J and V = B ∪ {(i, j)∈ I × J : j ∈Pi, i∈Pj}, i.e., U contains

the set of users and V the set of arcs that could be displayed in the second period. Let E ⊆ U × V be the

set of edges. Then, a pair (`, (`′, `′′))∈U ×V belongs to E if and only if

(`′, `′′)∈B` or [(`′, `′′) /∈B`, `∈ {`′, `′′}] .

In words, an edge between `∈U and (`′, `′′)∈ V exists if and only if the edge (`′, `′′) is either in the backlog

of ` or both users ` and `′ can see each other simultaneously. Now, for any pair of nodes (u, v) ∈ E such

that v ∈B, we define a variable yu,v that is equal to 1 if v = (u,u′) ∈Bu and u sees u′, and zero otherwise.

Similarly, for any pair (u, v) ∈E such that v = (u,u′) ∈ V \B, we define a variable xu,v that is equal to 1 if

u sees u′, and zero otherwise. Note that here we do a slight abuse of notation and assume that if xi,(i,j) = 1,

then i ∈ I sees profile j ∈ Pi \Bi and, similarly, if xj,(i,j) = 1, then j ∈ J sees i ∈ Pj \Bj . For convenience,

we will use in these cases that i ∈ (i, j) and j ∈ (i, j). Finally, for any pair (u, v) ∈ E such that u ∈ I and

v ∈ V \B, let wu,v = 1 if both users involved in v see each other simultaneously, i.e., if v= (i, j)∈ V \B, then

xi,(i,j) = xj,(i,j) = 1.

Using these variables, we can formulate the second period problem as follows:

f(B) := max
∑
u∈U

∑
v∈B

yu,v ·φ2
v +
∑
i∈I

∑
δ(i)∩V \B

wi,v ·β2
v (19a)

st.
∑

v∈δ(u)∩B

yu,v +
∑

v∈δ(u)∩V \B

xu,v ≤Ku, ∀u∈U (19b)

wi,(i,j)−xu,(i,j) ≤ 0, ∀(i, j)∈ V \B, i∈ I,u∈ (i, j) (19c)

wi,(i,j)−xu,(i,j) ≤ 0, ∀(i, j)∈ V \B, i∈ I,u∈ (i, j) (19d)
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xu,v ∈ {0,1} , v ∈ V \B, u∈ v (19e)

yu,v ∈ {0,1} , ∀u∈U,v ∈ δ(u)∩B (19f)

wi,v ∈ {0,1} , ∀v ∈ V \B, i∈ v (19g)

where β2
v = φ2

v · φ2
v is the match probability between the users in the pair v and δ(u) is the set of edges

incident to node u ∈ U . Let Q2 be the set of constraints in (19b), (19c) and (19d). Note that each variable

appears at most twice in Q2, and that every time they appear they are multiplied by either 1 or -1. Thus, to

show that the matrix of constraints if totally unimodular, it remains to show that the constraints in Q2 can

be separated in two subsets such that (i) if a variable appears twice with different signs, then the constraints

belong to the same subset, and (ii) if a variable appears twice with the same sign, then the constraints

belong to different subsets. Let Q2
I and Q2

J be the subsets of constraints of Q2 involving u ∈ I and u ∈ J ,

respectively. Then, observe that

• each wi,(i,j) appears in two constraints with the same sign (wi,(i,j)−xi,(i,j) ≤ 0 and wi,(i,j)−xj,(i,j) ≤ 0),

but these constraints belongs to Q2
I and Q2

J , respectively.

• each xi,(i,j) appears in two constraints with different signs (
∑

v∈δ(i)∩Bi
yi,v +

∑
v∈δ(i)∩V \Bi

xi,v ≤Ki and

wi,(i,j) − xi,(i,j) ≤ 0), but these constraints belong both to the same subset Q2
I . Similarly, xj,(i,j) appears in

two constraints with different signs, but both constraints belong to Q2
J .

Hence, using Hoffman’s sufficient condition, we conclude that the constraints in Q2 can be written as the

product of a totally unimodular matrix and our vector of decisions variables. Finally, since the right-hand

sides of the constraints are integral, we conclude that the feasible region of the problem is an integral

polyhedron, and thus we can solve its linear relaxation.

Proof of Proposition 6. Let Y(B) and Z(B) be the sets of backlog and non-backlog pairs shown in the

optimal solution of the second period problem. Consider the following example. Let I = {i1, i2} , J = {j1, j2},

and the following probabilities:

φi1,j1 = 1, φj1,i1 = ε,φi2,j2 = ε,φj2,i2 = 1, βi1,j2 = 1/2, βi2,j1 = 1/2.

IfB= ∅, then Z(B) = {(i1, j2), (i2, j1)}. If we add b= (i2, j2) to the backlog, then Z(B∪{(i2, j2)}) = {(i2, j1)}

and Y(B∪{(i2, j2)}) = {(j2, i2)}. Hence,

f(B∪{(i2, j2)})− f(B) = 1 + 1/2− (1/2 + 1/2) = 1/2.

On the other hand, if B′ = {(j1, i1)}, Z(B′) = {(i2, j1)} and Y(B′) = {(i1, j1)}. If we add b= (i2, j2) to B′,

then Z(B′ ∪{(i2, j2)}) = {(i2, j1)} and Y(B′ ∪{(i2, j2)}) = {(i1, j1), (j2, i2)}. Then,

f(B′ ∪{(i2, j2)})− f(B′) = 1 + 1 + 1/2− (1 + 1/2) = 1.

Hence, we have that

B⊂B′ and f(B∪{(i2, j2)})− f(B)< f(B′ ∪{(i2, j2)})− f(B′),

so we conclude that f(B) is not submodular.
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C.1.1. Proof of Theorem 5. Recall function f defined in (3) as

f(B) = max
x2∈P2

B

{∑
a∈E

φ2
ax

2
a

}
,

andM defined for x1 as

M(x1) =
∑
B⊆~E

f(B) ·Px1(B=B).

Recall also that this sum is over all possible backlogs, i.e., all edges that belong to ~E. Note that Px1(B=B)

“restricts” the valid backlogs that come from the first-period assortments x1, i.e., this probability will be

zero for any B that contains an element e∈ ~E with x1
e = 0. This means that effectively we are summing over

subsets of supp(x1) = {e∈ ~E : xe = 1}.

Lemma 8. The functionM can be reformulated as

M(x1) =
∑
B⊆~E

f(B∩ supp(x1))P(B=B),

where P(B=B) =
∏
a∈B φ

1
a

∏
~E\B(1−φ1

a).

Note that in the result above the distribution of the backlogs does not depend on the first-stage assortments.

Proof of Lemma 8. First, note that for any A ⊆ supp(x1) we have that any B ⊆ ~E such that A =

B∩ supp(x1) we have f(B) = f(A).

M(x1) =
∑
B⊆~E

f(B∩ supp(x1))P(B=B)

=
∑

A⊆supp(x1)

∑
B⊆~E:B∩supp(x1)=A

f(B∩ supp(x1))P(B=B)

=
∑

A⊆supp(x1)

∑
B⊆~E:B∩supp(x1)=A

f(A)P(B=B)

=
∑

A⊆supp(x1)

f(A)
∑

B⊆~E:B∩supp(x1)=A

P(B=B)

=
∑

A⊆supp(x1)

f(A)
∏
e∈A

φ1
ax

1
a

∏
e∈supp(x1)\A

(1−φ1
ax

1
a),

which is the description ofM that we studied in the proof of Theorem 2

In the same way, we can redefine M (x1,w1) for f (x1,w1,B) defined in (17). Now, we are ready to prove

our main result.

Proof of Theorem 5. For simplicity, we prove the result for the case when K` = 1 for all `∈ I ∪ J , as we

can always duplicate nodes accordingly. Consider an optimal solution (x1,?,w1,?) of Problem (16) and an

optimal solution (x̃1,?, w̃1,?) of Problem (18), leading to OPT1 and OPT2 expected matches, respectively.

When clear from the context, we will drop superindices to ease the notation and exposition.

Our goal is to lower bound the following ratio

OPT1

OPT2

=

∑
e∈E w

1
e ·β1

e +M(x)∑
e∈E w̃

1
e ·β1

e +M(x̃, w̃)
.
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Since like probabilities are time-independent, we can use Lemma 8 to redefine both objectives to consider

backlog distributions that are independent of the decisions in the first period. Namely,∑
e∈E w

1
e ·β1

e +M(x)∑
e∈E w̃

1
e ·β1

e +M(x̃, w̃)
=

∑
B

(∑
e∈E w

1
eβ

1
e + f(B∩ supp(x1))

)
P(B=B)∑

B

(∑
e∈E w̃

1
e ·β1

e + f̃(B∩ supp(x̃1), x̃1, w̃1)
)
P(B=B)

(20)

To simplify the exposition, suppose that like probabilities are time-invariant, i.e., φt`,`′ = φ`,`′ for all t∈ [T ],

` ∈ I ∪ J and `′ ∈ P`. To lower bound this ratio, we now proceed to lower bound the expected contribution

of each pair (i, j) ∈ I × J . Given that we are assuming one directional sequential shows going from I to J ,

the expected contribution of the pair (i, j) depends on the first-period decisions:

• If x1
(i,j) = 1, then the contribution of the pair (i, j) in the numerator is

∆ij = φijφji
∑

B:T∗
B,x13(j,i)

P(B=B)

where T ∗B,x1 is an optimal solution for objective f of the second stage for backlog B and assortments x1. ∆ij

is the product of: the probability that i liked j, the probability that i was shown to j in the second stage

and the probability that j liked i. Observe that if no agent i′ ∈ I such that x1
(i′,j) = 1 liked j, then i would be

part of the optimal solution of the second stage. In other words, the event in which no one (except i) likes j

implies the event of i being part of the optimal solution. Therefore,

∆ij = φijφji
∑

B:T∗
B,x13(j,i)

P(B=B)≥ φijφji
∏

6̀=i:x1
(`,j)

=1

(1−φ`,j)≥ φijφji
(

1− 1

n

)n
where the last inequality is due to our assumption.

• If w1
{i,j} = 1, then the contribution of the pair i, j in the numerator is φijφji.

Now, let us compare the contribution of (i, j) to OPT1 relative to its contribution to OPT2. As before, we

have different cases depending on the solutions x̃1, w̃1, and their second-period responses:

• If x̃1
(i,j′) = 1 for some j′ ∈ Pi with j′ 6= j (when j′ = j is analogous). In this case, the platform shows

j′ to i in the first stage as sequential show instead of j, hoping to get an extra simultaneous match in the

second stage. Therefore, the contribution of x̃1
(i,j′) in OPT′ would be potentially composed by two terms.

First, between i and j′ we have

∆̃ij′ = φij′φj′i
∑

B:T∗
B,x̃1,w̃13(j′,i)

P(B=B)

where T ∗B,x̃1,w̃1 is an optimal solution for objective f̃ of the second stage with backlog B, x̃1 and w̃1. In the

worst case, there is also a simultaneous match between i and j in the second period, which contributes (in

expectation) with

∆̃ij = φijφji
∑

B:T∗
B,x̃1,w̃13{i,j}

P(B=B).

In the worst case we have the following contribution in the denominator

∆̃ij′ + ∆̃ij = φij′φj′i
∑

B:T∗
B,x̃1,w̃13(j′,i)

P(B=B) +φijφji
∑

B:T∗
B,x̃1,w̃13{i,j}

P(B=B)≤ 2φijφji,

where the inequality is due to two facts: (i) ∆̃ij′ ≤ φijφji, otherwise in solution x1 with value OPT1 we

could show j′ to i instead of j and obtain a better solution, which would contradict the optimality of x1; (ii)∑
B:T∗

B,x̃1,w̃13{i,j}
P(B=B)≤ 1.
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• If w̃1
{i,j′} = 1 for some j′ ∈P ′; j′ potentially different than j. In this case, the platform decided to show

j′ to i simultaneously in the first stage. Then the contribution in the worst case is the following

∆̃ij′ + ∆̃ij = φij′φj′i +φijφji
∑

B:T∗
B,x̃1,w̃13{i,j}

P(B=B)≤ 2φijφji.

where the inequality can be justified analogous to the case above: we must have φj′i ≤ φji (recall both φij′
and φij are at most 1/n), otherwise if φj′i > φji then we can change the solution in x1 and get a better

objective since j′ would be part of the second-stage optimal solution at least every time that j is.

• If x̃1
(i,`) = w̃{i,`} = 0 for all ` ∈ Pi. This case is similar to the previous one, but now the contribution

would be composed only by a second-period term ∆̃ij , which is no worse than the other cases.

Therefore, for any pair (i, j) the ratio between each contribution is at least
∆ij

∆̃ij′ + ∆̃ij

≥
φijφji

(
1− 1

n

)n
2φijφji

≥ 1

2e
− o(1)

Finally, ∑
B

(∑
e∈E w

1
e ·β1

e + f(B∩ supp(x))
)
P(B=B)∑

B

(∑
e∈E w̃

1
e ·β1

e + f̃(B∩ supp(x̃1), x̃1, w̃1)
)
P(B=B)

≥min
i,j,j′

∆ij

∆̃ij′ + ∆̃ij

≥ 1

2e
− o(1).

Note that in our analysis we could be comparing more terms than actually needed to be, but we were looking

for a lower bound. To conclude the second part of the theorem, we observe that we can always obtain more

matches (in expectation) when we allow simultaneous matches in both periods rather than in the first period

only. We formalize this in Lemma 9.

Lemma 9. Consider a feasible solution (x1,w1) in Q1 as defined in (15), then

M(x1)≤M(x1,w1),

whereM(x1) andM(x1,w1) are part of the objective function of (16) and (18), respectively.

Therefore, if we consider x1,w1 a γ-approximate solution for Problem (16). Then, we have

M(x1,w1) +
∑
e∈E

βew
1
e ≥M(x1) +

∑
e∈E

βew
1
e ≥ γ ·OPT1 ≥ γ ·

(
1

2e
− o(1)

)
·OPT2.

C.2. Multiple Periods with Sequential Matches and One-Directional Interactions

As introduced in Section 3, let At` be the set of users that liked ` in period t, i.e., At` =
{
`′ : `∈ St`′ ,Φt

`′,` = 1
}
.

In a slight abuse of notation, let At` =
⋃
τ<t

Aτ` be the cumulative set of users that have liked ` before period

t. Note that, for any t∈ [T ], Bt` =At` \
(⋃

τ<t
Sτ`
)
or, alternatively, Bt` =At` ∩Pt` . In addition, to simplify the

exposition, suppose that like probabilities are time-invariant, i.e., φt`,`′ = φ`,`′ for all t ∈ [T ], ` ∈ I ∪ J and

`′ ∈P`.
Consider the following relaxation

max
∑

A⊆~EI

fT (A) ·λA (21)

s.t.
∑

A⊆~EI

λA = 1

∑
A:A3(i,j)

λA = φi,jxi,j , ∀i∈ I, j ∈ J

∑
j∈J

xi,j ≤Ki ·T, ∀i∈ I,

λA ≥ 0, xi,j ∈ [0,1],
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where

fT (A) = max

∑
e∈~EJ

φeye :
∑
i∈I

yj,i ≤Kj ·T, yj,i ≤ 1{(i,j)∈A}, ye ≥ 0

 .

Note that in fT (A) we can consider ye ∈ {0,1} or relax it to ye ≥ 0 as the problem is integral. In Relax-

ation (21), we can interpret λA as the probability that at the end of the process the whole set of cumulative

backlog is A and xi,j is the probability that i sees j at some period.

Lemma 10. The value of the optimal adaptive policy is upper bounded by Problem (21).

Proof. Let Ω be the space of sample paths of the optimal adaptive policy π∗ (DP formulation). Note that

each sample path ω ∈ Ω can be completely characterized by the assortments shown by the DP x1, . . . ,xT

and the realized likes captured by A1, . . . ,AT . We now construct a feasible solution for (21). First,

xi,j = P(i sees j in π∗) =
∑
ω∈Ω

∑
t∈[T ]

xt,ωi,j ·P(ω)

where xt,ωi,j = 1 if i sees j in time t in sample path ω and zero otherwise. Then, xi,j ≤ 1 as for every sample

path the DP shows at most once profile j to user i, i.e.,
∑

t
xt,ωi,j ≤ 1. Also, we know that∑

j∈J

xij =
∑
ω∈Ω

∑
t∈[T ]

∑
j∈J

xt,ωi,j ·P(ω)≤Ki ·T ·
∑
ω∈Ω

P(ω) =Ki ·T

where the inequality follows since the DP shows at most Ki profiles to each user i∈ I in every period t∈ [T ]

and every sample path ω ∈Ω.

On the other hand, note that the DP is essentially a deterministic algorithm over a decision tree, where

each path ω is the sample path, at each node an assortment is decided and the outgoing edges are defined by

the realizations. In this tree, for each ω we label its leaf lω by the final cumulative likes A; note that different

assortment decisions in this tree can lead to the same cumulative likes. With this in mind, we define

λA = P(π∗ leads to a cumulative set of likes A) =
∑

ω∈Ω : lω=A

P(ω).

Then, clearly
∑

A λA = 1 as in the root node, the sum of the probabilities of each realization sums up to 1.

Now, let us look at the marginals ∑
A3e

λA =
∑
A3e

∑
ω∈Ω : lω=A

P(ω)

=
∑
ω∈Ω

∑
t∈[T ]

xt,ωe P(ω)

=
∑

(ωe,ω-e)∈Ω

∑
t∈[T ]

xt,ωe P(ω)

=
∑

(ω,ω-e)∈Ω

∑
t∈[T ]

xt,ωe φeP(ω-e)

= φe
∑

(ω,ω-e)∈Ω

∑
t∈[T ]

xt,ωe P(ω-e)

= φexe
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where in the second equality we use the indicator xt,ωe if arc e was shown in some period t in path ω. In the

third equality, we conditioned over the arc being realized and sum over all the sample paths but removing

arc e in the tree, i.e., ω-e. The final equality follows by noting that decision at the step t in a path ω does

not depend on the realization of arc e so xωe =
∑

(ω,ω-e)∈Ω

∑
t∈[T ] x

t,ω
e P(ω-e).

Finally, we prove that the objective of the optimal adaptive policy is upper bounded by the optimal

value of the relaxation. For each sample path ω and time-period t, denote Yt,ω the assortments for the

responding side (this depend on the backlogs available at that period but we simplify the notation). Observe

that
⋃
t∈[T ] Y

t,ω is a feasible solution in the problem defined by fT (A) where A = lω. Therefore, the value

obtained by adaptive policy in sample path ω is∑
t∈[T ]

∑
e∈~EJ

φeY
t,ω ≤ fT (A)

(This follows because the responding assortments do not overlap since same profiles cannot be shown twice).

By taking expectation over all sample paths with probabilities λB, then we obtain

OPT≤
∑

A⊆~EI

fT (A)λ∗A,

where λ∗A is an optimal solution of the relaxation and OPT is the value of an optimal adaptive policy.

Now we show the following

Lemma 11. Problem (21) can be solved in polynomial time.

Proof. Note that the number of variables is exponential and the number of constraints is polynomial in

the size of the input. Therefore, let us consider the dual of Problem (21) where γ is the dual variable for the

first constraint, θi,j for the second family, αi for the third family and ηi,j for the constraints of type xi,j ≤ 1.

min γ+
∑
i,j

ηi,j +
∑
i

αi ·Ki ·T (22)

s.t. γ+
∑

(i,j)∈B

θi,j ≥ fT (A), ∀A⊆ ~EI

αi + ηi,j −φi,jθi,j ≥ 0, ∀i∈ I, j ∈ J

αi, ηi,j ≥ 0, γ, θi,j ∈R.

Note that in Problem (22), there is polynomial number of constraints in the second family, so we can separate

those in polynomial time. However, we have exponentially many in the first family of constraints. The

separation problem consists of solving the following: For given values θ ∈R~EI

max
∑
e∈~EJ

φeye− θēzē (23)

s.t. ye ≤ zē, ∀e∈ ~EJ∑
i∈I

yj,i ≤Kj ·T, ∀j ∈ J

ye ≥ 0 ∀e∈ ~EJ , ze ∈ {0,1} ∀e∈ ~EI



Authors’ names blinded for peer review
Article submitted to Management Science; manuscript no. 45

If the optimal value is at most γ, then we do not need to separate. Otherwise, we separate the corresponding

constraint. Clearly Problem (23) can be solved in polynomial time with the following algorithm: order in

decreasing value φj,i − θi,j and set ye = zē = 1 for the highest non-negative values as long as we satisfy the

cardinality constraint on y. Once reached the cardinality bound (if ever), then set zē = 1 for all remaining

θē ≤ 0.

Since the separation problem can be solved in polynomial time, then we can use the ellipsoid algorithm to

solve the dual (22) in polynomial time.

Proof of Theorem 6 As we noted in Lemma 11, Problem 21 can be solved in polynomial time via the

ellipsoid algorithm. The procedure will generate a restrictive version of the original dual with only the

necessary constraints. We can obtain then the primal of this which is a restrictive version of the original

primal with the same optimal value. Let λ̃ and x̃ be the optimal solutions of that restrictive primal, where

x̃∈ [0,1]
~EI . In particular, we know that for all i∈ I we have∑

j∈J

x̃i,j ≤Ki ·T

Independently for each i ∈ I, we use the dependent rounding algorithm of Gandhi et al. (2006) to obtain a

random integral point x̂ that satisfies the cardinality constraints with probability 1 and, more importantly,

such that P(x̂i,j = 1) = x̃i,j .

Therefore if we display the assortments derived from x̂, we get an expected objective value of
∑

A⊆~EI
fT (A) ·

Px̃(A) which 1− 1/e fraction of the optimal value of (21) by using the correlation gap result for monotone

submodular functions in Agrawal et al. (2010) (this result states that the expected value given by the

independent distribution Px̃(A) is 1− 1/e-factor away from the worst-case distribution λA with the same

marginal values φi,jx̃i,j , which is exactly the optimal value of the relaxation). Therefore,∑
A⊆~EI

fT (A) ·Px̃(A)≥ (1− 1/e) ·OPT

where OPT is the value of an optimal adaptive policy. Now we need to construct our semi-adaptive policy:

For a given random rounded solution x̂, we split it deterministically in at most T different assortments

x̂1, . . . , x̂T such that for all i∈ I and t∈ [T ] we have
∑

j∈J x̂i,j,t ≤Ki. Therefore,

Px̂(A) =
∏
t∈[T ]

Px̂t
(At)

Our semi-adaptive policy. In every step t, display the assortments defined by x̂t. Once users in I

like/dislike profiles, then for J show the best solution from backlog generated from x̂t and any remaining

backlog.

For a given family of random assortments x̂t, the realized like decisions At and the backlogs Bt, the value

of ALG (our policy) is

f(A1) + f(A2 ∪B2) + f(A3 ∪B3) + · · ·+ f(AT ∪BT )

where At is the set of edges that resulted in a like in period t (and thus entered the backlog) generated by

φx̂1, Bt = Bt−1 ∪At−1 \ St−1 is the updated backlog at the beginning of period t, St are the assortments
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displayed in period t. The expected value of our policy is the expected value over all possible backlogs

generated from x̂.

Our goal now is to prove that for a given family of sequential backlogs B1, . . . ,BT we have that

f(A1) + f(A2 ∪B2) + f(A3 ∪B3) + · · ·+ f(AT ∪BT )≥ fT (AT+1)

where AT+1 =
⋃
t∈[T ] A

t. Let Yt be the set of arcs that correspond to the optimal solution in fT which come

from backlog Bt and let VALt be their objective value in fT . For each t∈ [T ], Yt is a feasible solution in the

problem defined by f(At ∪Bt), therefore f(At ∪Bt)≥VALt and

f(A1) + f(A2 ∪B2) + f(A3 ∪B3) + · · ·+ f(AT ∪BT )≥
T∑
t=1

VALt = fT (AT+1)

By taking the expectation over backlogs and over the randomization of the rounding algorithm we obtain

our approximation factor E[ALG]≥ (1− 1/e) ·OPT.

Appendix D: Appendix to Section 6

D.1. Estimation of the like probabilities and sample for experiments

To estimate the probability that each user i likes a profile j ∈Pti , we use a logit model with user fixed effects:

yijt = αi +λt +X ′ijβ+ εijt. (24)

The dependent variable, yijt, is a latent variable that is related to the like decision Φt
ij according to

Φt
ij =

{
1 if yijt > 0,

0 otherwise.

We control for users’ unobserved heterogeneity by including user fixed-effects, αi. We also control for period-

dependent unobservables by including period fixed-effects, λt. The third term on the right-hand side, X ′ijβ,

controls for observable characteristics of profile j, and also for their interaction with user i’s observable

characteristics. Specifically, we control for the attractiveness score, age, height and education level (measured

in a scale from 1 to 3) of the profile evaluated. In addition, for each of these variables we control for the

square of the positive and negative difference between the value for the user evaluating and that of the profile

evaluated. Finally, we also control for whether the users share the same race and religion. Finally, εijt is an

idiosyncratic shock that follows an extreme value distribution. In Table 3, we report the estimation results.

Using these coefficients, for each user i and profile j ∈P1
i we compute the probability φij . In Figure 2 we

plot the distribution of like probabilities separating by gender, estimated using the parameters from column

(2) in Table 3. These are the probabilities we use on our simulation study.

In Table 4, we report summary statistics for the sample used in the numerical experiments (standard

deviations in parenthesis).
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Table 3 Estimation Results

(1) (2)

Batch size -0.004∗∗∗ -0.004∗∗∗
(0.0004) (0.0004)

Score 0.832∗∗∗ 0.832∗∗∗
(0.014) (0.014)

Score - Positive difference 0.012∗∗∗ 0.012∗∗∗
(0.003) (0.003)

Score - Negative difference -0.011∗∗∗ -0.011∗∗∗
(0.003) (0.003)

Age -0.026∗∗∗ -0.026∗∗∗
(0.004) (0.004)

Age - Positive difference -0.002∗∗∗ -0.002∗∗∗
(0.0004) (0.0004)

Age - Negative difference -0.0009∗∗ -0.0009∗∗
(0.0005) (0.0005)

Height 0.055∗∗∗ 0.055∗∗∗
(0.008) (0.008)

Height - Positive difference 0.002∗∗∗ 0.002∗∗∗
(0.0006) (0.0006)

Height - Negative difference -0.004∗∗∗ -0.004∗∗∗
(0.0006) (0.0006)

Education level 0.060∗∗ 0.061∗∗
(0.024) (0.024)

Education level - Positive difference -0.001 -0.0008
(0.014) (0.014)

Education level - Negative difference -0.077∗∗∗ -0.077∗∗∗
(0.016) (0.016)

Share religion 0.078∗∗∗ 0.078∗∗∗
(0.013) (0.013)

Share race 0.457∗∗∗ 0.458∗∗∗
(0.030) (0.030)

User X X
Date X

Observations 396,226 396,226
Pseudo R2 0.386 0.386

Figure 2 Distribution of Like Probabilities
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Table 4 Descriptives of Instance

N Score Potentials Backlog Like Prob.

Women 173 5.289 73.23 0.120 0.203
(2.454) (15.032) (0.152) (0.247)

Men 113 2.618 97.461 0.012 0.536
(1.463) (21.680) (0.026) (0.368)
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D.2. Perfect Matching (PM)

The Perfect Matching heuristic solves, in each period t∈ [T ], the following problem:

max
∑
`∈I∪J

∑
`′∈P`

yt``′φ
t
``′ +

1

2
wt``′β

t
``′

st. yt``′ ≤ 1{`′∈Bt
`}, for every `′ ∈Pt` , `∈ I ∪ J

xt``′ + yt``′ ≤ 1, for every `′ ∈Pt` , `∈ I ∪ J∑
`′∈Pt

`

xt``′ + yt``′ ≤K`, for every `∈ I ∪ J

wt``′ ≤ xt``′ , wt``′ ≤ xt`′`, wt``′ =wt`′`, for every `′ ∈Pt` , `∈ I ∪ J

xt``′ , y
t
``′ ,w

t
``′ ∈ {0,1} , for every `′ ∈Pt` , `∈ I ∪ J,

(25)

Then, set St` = {`′ ∈Pt` : xt``′ = 1 or yt``′ = 1} for each ` ∈ I ∪ J . Note that, if there is no initial backlog, then

the problem can be re-formulated as:

max
∑
e∈~EI

wteβ
t
e

st.
∑

e∈~EI :`∈e

wte ≤K`, for every `∈ I ∪ J

∑
t∈[T ]

wte ≤ 1, for everye∈ ~EI

wte ∈ {0,1} , for every e∈ ~EI ,

(26)

where the second constraint ensures that each edge is used at most once, i.e., that no two users see each

other more than once. This is captured in the previous formulation through the set of potentials Pt` .

D.3. Dating Heuristic (DH)

For each period t∈ [T ], DH considers two steps:

1. Optimization: this step involves solving the following linear program:

max

t+1∑
τ=t

∑
`∈I∪J

∑
`′∈Pt

`

yτ``′φ
τ
``′ +

1

2
·wτ``′φτ``′φτ`′`

s.t.
t′∑
τ=t

yτ``′ ≤ 1{`′∈Bt
`}+

t′−1∑
τ=t

(xτ`′`−wτ``′)φτ`′`, for every `′ ∈Pt` , `∈ I ∪ J, t′ ∈ [t, t+ 1],

t+1∑
τ=t

xτ``′ + yτ``′ ≤ 1, for every `′ ∈Pt` , `∈ I ∪ J,∑
`′

xτ``′ + yτ``′ ≤K`, for every `∈ I ∪ J, t∈ [t, t+ 1],

wτ``′ ≤ xτ``′ , wτ``′ ≤ xτ`′`, wτ``′ =wτ`′`, for every `′ ∈Pt` , `∈ I ∪ J, t∈ [t, t+ 1],

xτ``′ , y
τ
``′ ,w

τ
``′ ∈ [0,1] , for every `′ ∈Pt` , `∈ I ∪ J, t∈ [t, t+ 1].

(27)

The decision variables yt`,`′ and xt`,`′ represent whether ` sees profile `′ in period t as part of a backlog and

to initiate a sequential match, respectively. The objective is to maximize the expected number of matches

obtained in periods {t, t+ 1}, including sequential matches (first term in the objective) and simultaneous

matches (second term in the objective). The first constraint defines y and captures the evolution of the
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backlog. The second captures that a profile can be shown at most once, while the third constraint considers the

assortment size. Finally, the last constraint captures the definition of wt`,`′ , which accounts for simultaneous

matches between ` and `′ in period t.

2. Rounding: since the optimal decisions x∗,t, y∗,t,w∗,t of (27) may be fractional, this step involves rounding

them in order to decide the assortments to show in the current period. Specifically, the rounding process

starts by adding to St` the profiles for which yt`,`′ > 0 (in decreasing order). Then, if there is space left in the

assortment, the rounding procedure add to St` the profiles for which xt`,`′ > 0 (in decreasing order), making

sure that the assortment size constraints are satisfied.

Notice that these two steps consider the current set of potentials Pt` and backlog Bt` for each user `∈ I ∪ J .

Then, at the end of each period the sets of potentials and the backlogs must be updated considering the

assortments shown and the like/dislike decisions. Specifically,

Pt+1
` =Pt` \ (St` ∪{`′ ∈Pt` : `∈ St`′ , Φt

`′` = 0}) , Bt+1
` = (Bt` ∪{`′ ∈Pt` : `∈ St`′ , Φt

`′` = 1}) \St`.

This procedure in formally described in Algortihm 3.

Algorithm 3 Dating Heuristic (DH)
Input: An instance for a two-sided assortment problem.

Output: A feasible assortment.

1: for t∈ [T ] do

2: Solve (27) and keep x∗,t, y∗,t.

3: For each user `, sequentially add profiles `′ for which y∗,t`,`′ > 0 until the assortment size is
reached. If there is space left in the assortment, add profiles `′ for which x∗,t`,`′ > 0 until the
assortment size is reached.

4: Update potentials and backlogs.

D.4. Proof of Proposition 7

Consider a platform design with one-directional matches and sequential matches. Then, the problem that

the DH algorithm solves can be formulated as:

max
∑
j∈J

∑
i∈Pj

yj,i ·φ2
j,i

st. yj,i ≤ xi,j ·φ1
i,j , ∀i∈ I, j ∈Pi∑

j∈Pi

xi,j ≤Ki, ∀i∈ I∑
i∈Pj

yj,i ≤Kj , ∀j ∈ J

xi,j ∈ {0,1} , yj,i ∈ [0,1], ∀(i, j)∈ I × J

(28)

To show that Algorithm 1 provides a lower bound for the performance of DH, it is enough to show

Lemmas 12 and 13. The first lemma states that we can construct a feasible solution for Problem 28 using
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the solution from Algorithm 1. The second lemma states that, given two feasible solutions of Problem 28,

the one leading with the highest objective also leads to a higher objective in Problem 2. Then, since DH uses

the optimal solution of Problem 28 in the first period, we know that the objective function is higher than for

the solution obtained from Algorithm 1 and, by Lemma 13, we directly obtain that the solution from DH

leads to a higher expected number of matches than that of Algorithm 1.

Lemma 12. The solution of Algorithm 1 can be used to construct a feasible solution of DH.

Proof of Lemma 12. Let x̂ = {x̂e}e∈~EI
be the first period decisions obtained from Algorithm 1, and let

ŷ = {ŷe}e∈~EJ
be such that

ŷj,i =
∑

B⊆~EI

1{i∈Sj(B)} · IPx̂(B)

Sj(B) is the set of users displayed to j in the second period given a realized backlog B. More specifically,

Sj(B) is the set of Kj (or less) users in the backlog Bj with the highest probability of generating a match,

i.e., Sj(B) = arg max
{
S :
∑

i∈S φ
2
j,i : S ⊆B, |S| ≤Kj

}
.

From the definition of P 1, it is direct that
∑

j∈Pi
x̂i,j ≤Ki for all i∈ I. In addition, note that

ŷj,i =
∑

B⊆~EI

1{i∈Sj(B)} · IPx̂(B)

=
∑

B′⊆~EI\(i,j)

1{i∈Sj(B′∪(i,j))} · IPx̂(B′ ∪ (i, j))

=
∑

B′⊆~EI\(i,j)

1{i∈Sj(B′∪(i,j))} · IPx̂((i, j))IPx̂(B′)

= x̂i,j ·φi,j ·
∑

B′⊆~EI\(i,j)

1{i∈Sj(B′∪(i,j))} · IPx̂(B′)

≤ x̂i,j ·φ1
i,j

Finally, notice that∑
i∈Pj

ŷj,i =
∑
i∈Pj

∑
B⊆~EI

1{i∈Sj(B)} · IPx̂(B)

=
∑

B⊆~EI

∑
i∈Pj

1{i∈Sj(B)} · IPx̂(B)

=
∑

B⊆~EI

[
Kj−1∑
k=0

k · IPx̂ (|Bj |= k) +Kj · IPx̂ (|Bj | ≥Kj)

]
· IPx̂(B)

≤
∑

B⊆~EI

Kj · IPx̂(B)

=Kj

Hence, we conclude that the solution x̂, ŷ is feasible for Problem (28).

Lemma 13. Given two feasible solutions (x,y) and (x′,y′) of Problem 28 such that∑
j∈J

∑
i∈Pj

yj,i ·φ2
j,i ≤

∑
j∈J

∑
i∈Pj

y′j,i ·φ2
j,i,

then

EB∼φ1x [f(B)]≤EB∼φ1x′ [f(B)] .
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Proof of Lemma 13. First, recall that

EB∼φ1x [f(B)] =
∑

B⊆~EI

f(B) · IPx(B).

Consider a fixed x, and let fj(B) be the expected number of matches obtained by j in f , i.e., f(B) =∑
j∈J fj(B), with B∼ φ1x. Note that, given a realized backlog B, fj and fj′ are independent for any j, j′ ∈ J .

In addition, notice that fj(B) can be formulated as the solution of the following optimization problem:

max
∑
i∈Pj

zi ·φ2
j,i

st.
∑
i∈Pj

zi ≤Kj

zi ≤ 1{i∈Bj}, ∀i∈Pj

zi ∈ {0,1} , ∀i∈Pj .

Let z∗ be the optimal solution of this problem. It is easy to see that z∗i = 1 if and only if i ∈ Sj(B), so we

can re-write z∗i = 1{i∈Sj(B)}. Then,

EB∼φ1x [fj(B)] =
∑

B⊆~EI

∑
i∈Pj

z∗i (B) ·φ2
j,i

 · IPx(B)

=
∑

B⊆~EI

∑
i∈Pj

1{i∈Sj(B)} ·φ
2
j,i

 · IPx(B)

=
∑
i∈Pj

∑
B⊆~EI

1{i∈Sj(B)} · IPx(B) ·φ2
j,i

=
∑
i∈Pj

yj,i ·φ2
j,i

where the last equality follows from the construction in the proof of Lemma 12 (we add the dependence on

B to avoid confusion). Then, if we know there are two feasible solutions (x,y) and (x′,y′) such that the

latter leads to a higher objective of Problem (28), we know that

EB∼φ1x [fj(B)] =
∑
i∈Pj

yj,i ·φ2
j,i ≤

∑
i∈Pj

y′j,i ·φ2
j,i =EB∼φ1x′ [fj(B)]

concluding our proof.


	Introduction
	Contributions
	Related Literature
	Model
	Problem formulation
	Natural Approaches

	Analysis for Different Platform Designs
	Sequential Matches and One-directional Interactions
	Sequential Matches and Two-directional Interactions
	Simultaneous Matches and One-directional Interactions
	Simultaneous Matches and Two-directional Interactions
	Extensions
	Simultaneous Matches in both Periods and One-Directional Interactions
	Multiple Periods with Sequential Matches and One-Directional Interactions

	Experiments
	Data
	Benchmarks
	Results

	Conclusions
	Appendix to Section 3
	Dynamic programming formulation
	Complexity
	Offline Optimum versus Online Optimum
	Natural Approaches
	Appendix to Section 4
	Missing Proofs in Section 4.1
	Missing Proofs in Section 4.2
	Missing Proofs in Section 4.3
	Missing Proofs in Section 4.4



	Appendix to Section 5
	Simultaneous Matches in both Periods and One-Directional Interactions
	Proof of Theorem 5.

	Multiple Periods with Sequential Matches and One-Directional Interactions
	Appendix to Section 6
	Estimation of the like probabilities and sample for experiments
	Perfect Matching (PM)
	Dating Heuristic (DH)
	Proof of Proposition 7






