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Abstract

We analyze the application process in the Chilean College Admissions problem. Students
can submit up to 10 preferences, but most students do not fill their entire application list
(“short-list”). Even though students face no incentives to misreport, we find evidence of
strategic behavior as students tend to omit programs for which their admission probabilities
are too low. To rationalize this behavior, we construct a portfolio problem where students
maximize their expected utility given their preferences and beliefs over admission probabili-
ties. We adapt the estimation procedure proposed by Agarwal and Somaini (2018) to solve
a large portfolio problem. To simplify this task, we show that it is sufficient to compare a
ROL with only a subset of ROLs (“one-shot swaps”) to ensure its optimality without run-
ning into the curse of dimensionality. To better identify the model, we exploit a unique
exogenous variation on the admission weights over time. We find that assuming truth-telling
leads to biased results. Specifically, when students only include programs if it is strictly
profitable to do so, assuming truth-telling underestimates how preferred selective programs
are and overstates the value of being unassigned and the degree of preference heterogeneity
in the system. Ignoring the constraint on the length of the list can also result in biased
estimates, even if the proportion of constrained ROLs is relatively small. Our estimation
results strongly suggest that “short-list” students should not be interpreted as truth-tellers,
even in a seemingly strategy-proof environment. Finally, we apply our estimation method to
estimate students’ preferences for programs and majors in Chile and find strong differences
in preferences regarding students’ gender and scores.

1 Introduction

In recent years, growing attention has been devoted to understanding the application behavior
of students in centralized admission systems. A major question is how to separately identify
students’ preferences from beliefs on admission chances using only data on application lists
and/or enrollment choices. This is especially relevant in settings where the mechanism used
is not strategy-proof, such as systems where the Immediate Acceptance mechanism is in place
(Agarwal and Somaini (2018), Calsamglia et al. (2018), Kapor et al. (2017), among others), or
when the rules/restrictions of the system introduce strategic considerations (Ajayi and Sidibe
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(2017), Artemov et al. (2017), Fack et al. (2015)). For instance, a common restriction is to
constrain the number of applications that students can submit, as it is the case in Chile, Tunisia,
Ghana, among others.

Previous research has exploited well-known properties of the mechanism when trying to identify
students’ preferences. For instance, a common approach is to assume pairwise stability. In this
case, the researcher interprets the enrollment or assignment to be the favorite school among all
schools the student is qualified for ex-post (Bordon and Fu (2010), Bucarey (2017), Fack et al.
(2015), Artemov et al. (2017), among others). Fack et al. (2015) show that, under certain con-
ditions, stability is a plausible assumption in a large market, as it is an approximate equilibrium
outcome of a game of incomplete information. However, when students’ information is incom-
plete, stability is not guaranteed to be an ex-post optimality condition. Although this approach
relies mostly on using data on students’ enrollment or assignment, Fack et al. (2015) also show
that is possible to include information contained in the Rank Order Lists (ROL) using moment
inequalities.

Another property of the mechanisms that has been explored for identification is strategy-
proofness. When the mechanism used is strategy-proof and students face no other strategic
incentives, it is weakly optimal for them to report their true preferences (Haeringer and Klijn
(2009)), so the submitted ROLs can be used to identify preferences. This is the case when the
mechanism used is the Deferred-Acceptance algorithm (Gale and Shapley (1962)) and there is
no constraint on the length of the ROLs, or when students submit a list that is shorter than
the maximum allowed and thus the constraint is not binding (Abdulkadiroğlu et al. (2017) and
Luflade (2017)). However, this assumption may not always hold. For instance, if students assign
zero probability to be admitted to some schools, it is still weakly optimal not to include them
in their list. This skipping behavior is also optimal if there are search costs and students believe
their admission chances are relatively low. In both cases, assuming that “short-list” students
report truthfully would result in biased estimates. One of the main contributions of this paper is
to show that this is indeed the case in the Chilean college admissions problem, and that assum-
ing truth-telling of “short-list” students can lead to biased results. Thus, we enrich the recent
discussion on whether students are truthful in seemingly strategy proof environments. For exam-
ple, Fack et al. (2015) analyze the high-school system in Paris, and reject strategy-proofness as
an identifying assumption in favor of stability. Shorrer and Sóvágó (2017) study the Hungarian
College Admissions process and find that an important fraction of applicants play dominated
strategies. In line with the previous studies, Rees-Jones (2017) shows that a significant fraction
of residents do not report truthfully in the National Resident Matching Program.

Instead of assuming stability or truth-telling, an alternative approach to estimate student pref-
erences is to model their application behavior. This strand of the literature is very recent, and
has mainly focused on school choice settings. Here the researcher interprets the submitted ROL
to be the result of an expected utility maximization process given students’ beliefs over ad-
mission probabilities. Agarwal and Somaini (2018) propose a general methodology to estimate
preferences in centralized admission systems where the mechanism can be represented with a
cutoff structure. They show that (equilibrium) beliefs can be estimated in a first stage using
the data on reports and simulating the assignment process if the researcher is willing to assume
a particular structure for beliefs, e.g. rational expectations. After estimating beliefs, they use a
likelihood-based approach to estimate preferences in a flexible specification. Kapor et al. (2017)
adapt this estimation procedure to incorporate survey data on beliefs and enrollment decisions
in the New Haven school choice system. They find that students have biased beliefs over their
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admission probabilities. In addition, Kapor et al. (2017) use their model to estimate students’
preferences and simulate the effects of changing the assignment mechanism in New Haven. Ajayi
and Sidibe (2017) analyze the application behavior of students in the centralized high-school sys-
tem in Ghana. In this case, students can apply to no more than 6 schools, and they do so before
knowing their application scores. They model students’ beliefs over scores and admission prob-
abilities assuming that students can imperfectly forecast schools’ cutoffs using historical data.
They propose to jointly estimate beliefs and preferences using an extension of the Marginal
Improvement Algorithm (see Chade and Smith (2006)) and the Simulated Method of Moments.
Finally, Luflade (2017) analyzes the College Admissions problem in Tunisia. She exploits the
sequential implementation of the Tunisian mechanism to identify students’ preferences in a first
stage. She argues that students who face admission probabilities close to 1 in each round of the
mechanism and students who do not completely fill their application list should be interpreted
as truth-tellers. Later she estimates students’ beliefs over admission probabilities allowing for
different levels of sophistication.

In this paper we analyze the Chilean College Admissions problem, where students face a seem-
ingly strategy-proof environment. Even though students are constrained to apply to at most 10
out of 1,400 programs available, only 10% of students submit a ROL for which this constraint
is binding. This may suggest that most of the students submit their true preferences. However,
we provide evidence that students tend to apply in first preference to programs for which their
application score is close to the program’s cutoff. Using survey data on students preferences
elicited before scores are revealed, we find that students tend to avoid listing programs where
their admission probabilities are relatively low. This finding suggests that students who submit
short lists shouldn’t be interpreted as truth-tellers, and that this behavior is mainly driven by
their beliefs on admission probabilities rather than by preference heterogeneity.

Based on this finding, we assume that students do not include programs in their application
lists if it is not strictly profitable to do so, and we construct a portfolio problem where students
maximize their expected utility of reporting a ROL given their preferences and beliefs over
admission probabilities. We adapt the estimation method proposed by Agarwal and Somaini
(2018) to solve a large portfolio problem, assuming independence over admission probabilities
and rational expectations. A major challenge to implement this methodology is to avoid running
into the curse of dimensionality, as the number of potential ROLs grows exponentially with the
number of programs. To deal with this, we show that it is sufficient to compare a ROL with only
a subset of ROLs (“one-shot swaps”) to ensure its optimality, and we incorporate this finding
into a Gibbs Sampler estimation algorithm. In addition, we exploit a novel source of variation
in the choice environment over admission processes to better identify the model, which is the
time variation in admission weights as an exogenous shifter of beliefs on admission probabilities.

We compare the results of this approach against assuming truth-telling of “short-list” students,
and we find that assuming the latter leads to biased results. If we assume that students are
truthful and ignore the fact that they exclude programs where their marginal benefit is zero, this
would result in underestimates of the value of selective programs and overestimates for the value
of the outside option. Moreover, assuming truth-telling without taking into account students’
beliefs on admission probabilities can lead to overstate the degree of preference heterogeneity
in the system. Finally, we show that ignoring the constraint on the length of the list can also
result in biased estimates, even if the proportion of constrained ROLs is relatively small.

The closest papers to ours are Ajayi and Sidibe (2017) and Artemov et al. (2017). Our paper
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complements both from a methodological standpoint, and also in terms of the resulting insights.
In Ajayi and Sidibe (2017) students apply before knowing their (unique) application score, so
they face two sources of uncertainty: their application score, and the scores and preferences of
other students. Hence, students’ admission chances are clearly correlated in their setting. In
addition, most students in Ghana submit a preference list that contains the maximum number
of schools allowed. In the Chilean case, students only face the second source of uncertainty,
and most of them report “short-lists”. Moreover, Ajayi and Sidibe (2017) use (an extension of)
the Marginal Improvement Algorithm (MIA) to approximate heuristically the optimal portfolio
problem and simulate data predicted by their model. Later they jointly estimate preferences
and beliefs using the Simulated Method of Moments. In contrast, we exploit the richness of our
data and the properties of the optimal portfolio to construct identifying restrictions and estimate
preferences in a likelihood-based approach. While their estimation procedure is attractive for
large scale problems when admission chances are correlated, their identification strategy relies
on functional form assumptions on the beliefs formation process and the preference specification.
In this sense, one of our main contributions is to adapt the general identification strategy in
Agarwal and Somaini (2018) to large-scale portfolio problems. To our knowledge, our method
is the first likelihood-based approach to solve large-scale portfolio problems without running
into the curse of dimensionality. This methodology can be used to estimate preferences in other
large-scale settings of portfolio problems, whenever beliefs on admission probabilities can be
estimated in a first stage and assumed to be independent across alternatives.

In the case of Artemov et al. (2017), the authors find a similar pattern in the Australian College
Admissions problem, as some students omit programs that are out of their reach. The authors
show that assuming truth-telling in this setting can result in biased estimates, and show that
stability (similar to Fack et al. (2015)) provides a more robust estimation strategy when students
make strategic mistakes. The stability assumption is an attractive alternative for estimating pref-
erences when students do not report truthfully or when they make strategic mistakes. However,
as it does not use information on students’ beliefs on admission probabilities, the econometrician
is unable to extract all the rich information contained in the ROLs for identification. Moreover,
understanding students’ beliefs becomes important if we want to simulate students’ applications,
especially in counterfactual scenarios that involve strategic considerations.

The reminder of the paper is organized as follows. In Section 2 we describe the Chilean College
Admissions problem, the assignment mechanism and we provide descriptive evidence on the
students’ application behavior. In Section 3 we present a model of students’ portfolio choices.
In Section 4 we describe the data and in Section 5 the identification strategy. In Section 6, 7 and
8 we describe the simulations and results. Finally, Section 9 concludes and provides directions
for future work.

2 Chilean system

2.1 The Chilean Mechanism

The Chilean university market is semi centralized, with 33 of the most selective universities
(close to half) participating in a centralized system run by CRUCH.1 Students apply directly to

1The Consejo de Rectores de las Universidades Chilenas (CRUCH) is the institution that gathers these uni-
versities and is responsible to drive the admission process, while DEMRE is the organism in charge of applying
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the specific major of their choice instead of going to college first. Thus, from now on we refer
to the pairs major/university as programs, and we use M to refer to the set of programs. In
order to apply to any of the close to 1,400 program in these universities, students undergo a
series of standardized tests (Prueba de Selección Universitaria or PSU). The PSU tests include
Math, Language, Science and History, and each of these tests gives students a standardized
score. Students’ performance during high-school results in two additional scores, one constructed
with the average GPA along high-school (Notas de Enseñanza Media or NEM) and the other
measuring the relative rank of the student’s GPA among his cohort (Ranking de Notas or Rank).

After knowing their scores, students can submit a list with no more than 10 programs ranked
in strict order of preference2 at no (monetary) cost. Each program has previously announced
its vacancies and a set of admission requirements they will consider for the applications to be
valid. However, even if the application to a particular program is not valid, students are still
allowed to submit their application list in the system. In addition, each program announces
every year a set of admission weights. Application scores are computed as the weighted average
of students scores and admission weights. As a result, students’ application scores can differ
across programs.

Each program’s preference list is constructed by ordering admissible students in terms of their
application scores. As students can have the same application scores, preferences of programs
need not be strict. Considering the preference lists of the applicants and programs, and the
vacancies, DEMRE runs an assignment algorithm to match students to programs. The mech-
anism used is a variant of the student-proposing deferred acceptance algorithm3 in which tied
students in the last seat of a program aren’t rejected if vacancies are exceeded. More formally,
the allocation rule can be described as follows:

Step 1. Each student proposes to his first choice according to their submitted ROL. Each
program rejects any unacceptable student, and if the number of proposals exceeds its
vacancies (q), rejects all students whose scores are strictly less than the q-th most preferred
student.

Step k ≥ 2. Any student rejected in step k−1 proposes to the next program in their submitted
ROL. Each program rejects any unacceptable student, and if the number of proposals
exceeds its vacancies (q), rejects all students whose score is strictly less than the q-th most
preferred student.

The algorithm terminates either when there are no new proposals or when all rejected students
have exhausted their preference lists. The final allocation is obtained by assigning each student
to the most preferred program in his ROL that did not reject him. As a side outcome of this,
the algorithm generates a set of cutoffs {Pj}j∈M , where Pj is the minimum application score
among students matched to program j ∈ M . Hence, for any student i with ROL Ri and set of
scores {sij}j∈M , the allocation rule can be described as

i is assigned to j ⇔ j ∈ Ri, sij ≥ Pj and sij′ < Pj′ ∀j′ ∈ Ri st. j′ �Ri j,

the selection tests and carrying out the assignment of students to programs.
2After scores are announced, they have a period of 5 days to submit their application list, being able to re

submit as many times as they want.
3Before 2014 the algorithm used was the university-proposing version. The assignment differences between

both implementations of the algorithm are negligible Ŕıos et al. (2018).
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where �Ri is a total order induced by Ri over the set {j : j ∈ Ri} , such that j′ �Ri j if and
only if program j′ is ranked above program j in Ri. This cutoff structure is relevant because
it allows to use the framework introduced in Agarwal and Somaini (2018) for identification and
estimation. We provide more details in Section 3.2.

2.2 Uncertainty

As the Chilean mechanism can be represented using a cutoff structure, the uncertainty that
students face on their admission probabilities can be summarized by the variation in cutoffs
from year to year. Figures 2.1 and 2.2 show the variation in cutoffs between 2013 and 2014.
Each dot shows the variation of a program’s cutoff in PSU points with respect to its cutoff in
2013. We observe that less selective programs (with lower cutoffs) had a higher variation in their
cutoffs. However, due to minimum score restrictions, there is a mass of low selectivity programs
for which their cutoffs do not vary between 2013 and 2014. The uncertainty faced by students
is sizable, considering that the standard deviation of PSU test scores is 110 points.

Figure 2.1: Variation in cutoffs 2013-2014
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Notes: Scatter plot of absolute variation in cutoffs between 2013 and 2014 with respect to their cutoff
in 2014. Each dot represents a program present in both years.
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Figure 2.2: Variation in cutoffs 2013-2014 by PSU cutoff category
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Notes: Boxplots of absolute variation in cutoffs between 2013 and 2014. Boxplots are computed for
different ranges of PSU points.

Given that the cutoff of a given program is by definition the weighted score of its last admitted
student, we expect that changes in the number of vacancies would mechanically change the
cutoffs if everything stays the same. Variation can also be driven by changes in admission
weights, restrictions, and by changes in the population of applicants from year to year. Some
of these changes could be anticipated by students, since the number of seats available and the
admission requirements of each program are announced before the application process begins.

2.3 Strategic behavior: Selection on Admission Probabilities

In the previous section we show that students face some degree of uncertainty, as cutoffs are not
perfectly correlated across years. A natural question that this raises is whether students take
their admission probabilities into account when submitting their applications.

If there were no restrictions on the length of the list, rational students would not need to take
their admission probabilities into account in order to choose their (weakly) optimal ROL. As the
Chilean mechanism is strategy-proof in the large,4 (Ŕıos et al. (2018)) a weakly optimal solution
would be to report their true preferences. However, as truth-telling is only weakly-optimal, this
rationale does not rule out the possibility that students are misreporting their true preferences,
even when restrictions on the length of the list are not binding. We show evidence that this is
indeed the case in Chile.

Figure 2.3 shows the distribution of the number of programs considered in the ROL among
students who applied to at least one program. We observe that more than 90% of students
apply to less than the maximum number of programs allowed (10).

4A mechanism is strategy-proof in the large (SP-L) if, for any full-support i.i.d. distribution of students’
reports, being truthful is approximately optimal in large markets Azevedo and Budish (2017).
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Figure 2.3: Number of applications per student by year
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Notes: Distribution of the number of applications per student (length of the ROLs) by year.

In addition to the constraint on the number of programs that can be part of a ROL, some
universities add an additional constraint that restricts the position that certain programs can
take in a student’s report. For instance, the two most selective universities (PUC and UCH)
require applicants to apply within the top 4 preferences. This restriction introduces incentives
to misreport preferences (Lafortune et al. (2016)), and could explain why students are strategic
when choosing where to apply. However, we observe that strategic behavior is present even
when these constraints are not binding. Indeed, we observe that students tend to list as their
top choice programs for which their scores are close to the cutoff of the current year. In Figure
2.4 we show the distribution of the difference between the weighted score of each student and
the cutoff of the program they applied to in first preference. We observe a peak at 0, showing
that students tend to list as their top choice, programs for which their weighted score is around
the cutoff.
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Figure 2.4: Distribution of difference between PSU score and cutoff for first listed preference in
2014
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Notes: Empirical (nonparametric) distribution of the difference between each student’s PSU score and
the cutoff for his/her first listed preference in 2014.

This pattern is still present after controlling for students’ weighted scores. Figure 2.5 shows
boxplots of the difference in points between the weighted score of the applicant and the cutoff of
the program that each student listed in first preference. We observe that the median is around
0 for most categories, showing that students tend to apply in first preference to programs for
which their weighted score is around the cutoff.

Figure 2.5: Boxplots of difference between PSU score and cutoff for first preference in 2014
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Notes: Boxplots of the difference between each student’s PSU score and the cutoff for his/her first listed
preference in 2014. Each boxplot is computed by different PSU ranges of the cutoff. The solid horizontal
lines show the medians for each boxplot and the dashed line is a reference horizontal line at zero.

We also find evidence for this application pattern in the assignment results. Figure 2.6 shows,
for different cutoff ranges, the distribution of preference of assignment per student. We observe
that the share of students assigned on each preference is roughly the same for different score
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categories. For instance, we observe that the fraction of students assigned to their top choice is
similar regardless of their scores, suggesting that students with lower scores apply in their top
preference to programs with lower cutoffs.

Figure 2.6: Preference of assignment by PSU score category in 2014
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Notes: Distribution of the preference in which each student was assigned in 2014. Each distribution is
computed by different student’s PSU score ranges.

Compared to the application behavior in first preference, we observe in Figure 2.7 that students
tend to apply above the cutoffs for their last submitted preference.

Figure 2.7: Boxplots of difference between PSU score and cutoff for last preference in 2014
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Notes: Boxplots of the difference between each student’s PSU score and the cutoff for his/her last listed
preference in 2014. Each boxplot is computed by different PSU ranges of the cutoff. The solid horizontal
lines show the medians for each boxplot and the dashed line is a reference horizontal line at zero.
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The previous results suggest that students are taking into account their admission probabilities
in their application behavior. However, we cannot disentangle how much of this pattern is driven
by preference heterogeneity and by beliefs on admission probabilities. For instance, the cutoff
can be thought of as a signal of how demanding the program is, and some students may prefer
to attend easier ones. To show that this is not the case and that the main force driving this
application pattern are beliefs on admission probabilities, we use information from two surveys
conducted in 2014 and 2018.

2.3.1 Surveys

Survey on true preferences (pre-applications, 2014). In 2014, CRUCH and DEMRE
conducted a survey intended to elicit students’ “true” preferences for programs. The survey was
sent via email to all participants (roughly 200,000) between October and November, i.e., before
the standardized national exam. As a results, all students that responded to the survey (roughly
40,000) did not know their scores at the time of the survey.

Among other questions, students were asked the following:

“The following question is intended to elicit your true preferences over programs [...]” “If you
could choose any program to study. In order of priority (the first being the most preferred), what
would be the 3 programs chosen by you?”

Due to constraints imposed by DEMRE, the survey only elicited the major of preference but not
the most preferred program (pair major/university). This complicates the analysis because there
exists large heterogeneity in programs’ selectivity across universities. To avoid this problem, we
focus on students who reported Medicine as their top preference in the survey. The reason to
focus on Medicine is that it is a very selective major, so the cutoffs across universities are close to
each other and the minimum cutoff is relatively high. Among the 40,000 students who answered
the survey, close to 10% (3,797) reported Medicine as their top preference, and 2,987 of these
students ended-up applying to the system. Among these, only 1,360 listed Medicine as their top
preference (1,600 in some preference).

Table 2.1 shows a probit regression where the dependent variable takes value 1 if the student (who
listed Medicine in first preference in the survey) applied to Medicine in first preference in the
application process. We observe that students with lower scores (thus, with lower chances of been
accepted) are more likely to omit Medicine from their top preference. Given how the question
was phrased, some students could have interpreted that the report of their first preference in the
survey was without considering the tuition of the programs. However, after controlling for family
income, the average score of the student is still a statistically significant predictor for omitting
or not Medicine in first place. Moreover, looking at the predicted probability of applying to
Medicine in first preference, in Figure 2.8, we observe a sharp increase in the range between 600
and 750 points, which is the range where most cutoffs are located.
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Table 2.1: Probability of applying to Medicine in first preference, conditional on reporting
Medicine in first preference in the survey

Dependent variable:

Apply to Medicine in First Preference

(1) (2)

Math-Verbal1 −0.039∗∗∗ −0.038∗∗∗

(0.006) (0.006)
Math-Verbal squared 2 0.00004∗∗∗ 0.00004∗∗∗

(0.00000) (0.00001)
Constant 8.640∗∗∗ 8.315∗∗∗

(1.863) (1.875)
Family Income3 No Yes

Observations 2,907 2,919

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
1 Average score between Math and Verbal.
2 Square of average score between Math and Verbal.
3 Gross (self-reported) family income.

Figure 2.8: Predicted probability for applying to Medicine in first preference
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Notes: Predicted probability for applying to Medicine in first preference conditional on reporting
Medicine in first preference in the survey. The model does not include family income as a covariate.

These results suggest that students take into account their admission probabilities in their ap-
plications, and some of them do not apply to their most preferred programs if their admission
probabilities are too low. This result is true even for students who do not face clear strategic
incentives given by restrictions in the length of the list in our sample (87% of the students who
declared Medicine as their most preferred program in the survey and submitted an application
are “short-list” students). This skipping pattern is also described in (Fack et al., 2015) and
Artemov et al. (2017).
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Survey on true preferences and beliefs (post-applications, 2019). A caveat of the
previous survey is that it does not explicitly elicit beliefs on admission probabilities nor true
preferences for major-university. To accomplish this, we conducted a new survey right after the
application process in 2019. The survey was sent to 154,366 applicants,5 all of whom knew their
scores and already submitted their ROL.6 Among other questions, students were asked:7

“This question aims is to know where you would have applied to in the hypothetical case in
which your admission did not depend on your scores. Remember that this is only a hypothetical
question and will not have any effect on your application nor in your admission probabilities.
If the admissions process did not depend on your PSU score, nor your NEM scores, nor your
Ranking scores. What would have been your main program choice?”

We label as truth-tellers all students who answered the same program they listed in their ap-
plication as their top preference. In Figure 2.9 we show the share of truth-tellers in the survey,
separating between those who reported constrained ROLs and those who did not (i.e., reported
a short lists). We observe that only 43% of short-list students report their true first preference.
On the other hand, for students who list the maximum of programs allowed (constrained lists),
the share of truth-tellers is even lower. This suggests that students who report constrained lists
are indeed facing more strategic incentives to misreport their true preferences than students who
report short-lists.

5We received 54,997 incomplete responses and 38,979 full responses.
6We describe and analyze this survey in more detail on Larroucau et al. (2019).
7We decided to randomize over two versions of this question. The second version included explicitly that in

the hypothetical scenario the program was also tuition-free. We do not find significant differences in terms of the
share of truth tellers in both versions of the question.
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Figure 2.9: Share of survey truth-tellers
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Notes: Share of truth tellers from the sample of students who completed the survey. Results are computed
separately for students who submitted short lists (strictly less than 10 programs in their ROLs) and
constrained lists (listed 10 programs in their ROLs).

To know whether this skipping behavior is due to beliefs on admission probabilities, we included
the following question:

“What do you think is going to be this year’s cutoff score in this program?”

This question allows us to obtain a proxy of students’ beliefs on their admission probabilities
for their first true preference. Figure 2.10 shows the distribution of the difference between the
expected cutoff for the first true preference and the expected cutoff for the first listed preference
for students who are not truth-tellers. We observe that the distribution is skewed towards
positive numbers, which implies that most students who did not include their first true preference
in their application list expected a higher cutoff than the cutoff for their first listed preference.
This result is again consistent with the hypothesis that students tend to skip programs for which
their (believed) admission probabilities are too low.
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Figure 2.10: Expected cutoffs for first true preference vs first listed preference for students who
misreport
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Notes: Histogram of the difference between expected cutoff for first true preference and expected cutoff
for first listed preference. Results are computed only for the population of students who are not considered
as truth tellers in the survey.

Finally, as a robustness check, we calculate the share of truth-tellers by different ranges of
average score in Mathematics and Verbal. Figure 2.11 shows that the share of truth-tellers
increases for students with higher scores. This result is consistent with the fact that students
with higher scores have less constrained choice sets, facing lower incentives to behave strategically
and misreport their true preferences.
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Figure 2.11: Share of survey truth-tellers by average score

Notes: Share of truth tellers from the sample of students who completed the survey. Results are computed
separately for different ranges of the average score in Mathematics and Verbal.

The previous evidence suggest that, upon indifference, students tend to left-censor their appli-
cation lists relative to their true preferences. This motivates the following assumption:

Assumption 1. A student won’t include a program in the portfolio unless it is strictly profitable
to do so.

Given that there are no monetary application costs in our setting, Assumption 1 could be micro-
funded by including an information acquisition cost due to search frictions. Assumption 1 has
two relevant implications:

1. Students won’t include programs for which their admission probabilities are 0.

2. If a student includes a program in the list for which his admission probability is exactly 1,
then he won’t include programs below it.

If Assumption 1 holds for a significant fraction of students, assuming that short-list students are
truth tellers would be misleading to understand students’ preferences in this setting.
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3 Model

Consider a finite set of students N and a finite set of programs M . Each student i ∈ N
is characterized by a vector of indirect utilities ui and a vector of scores si. Each program
j ∈M is characterized by its number of vacancies qj and a vector of admission weights ωj . The
application score of student i in program j, sij , is given by:

sij =
∑
k

ωkj s
k
i .

We denote by Pj the application score of the last admitted student to program j, and we refer
to it as the cutoff.

3.1 Preferences

Let ui ∼ fu(u) be the vector of indirect utilities of student i. In particular, we assume that the
indirect utility of student i for program j can be written as:

uij = u(Zij , dij , ξj) + εij , (3.1)

where Zij are observable characteristics of student i and program j, dij is the distance between
program j and student i, and εij is an idiosyncratic preference shock for which we impose
additive separability. We also include an unobserved component ξj to capture characteristics
that are unobserved by the econometrician.

For identification, we specify a location normalization and a scale normalization. Unless stated
differently, we normalize the indirect utility of the outside option to 0,8 i.e., ui0 = 0. We can
interpret ui0 as the value that student i gets for being unassigned in the centralized system. As
the Chilean system is semi centralized, this outside option includes the possibility of enrolling in
institutions that are not part of the system, but also the possibility of reapplying to programs
in the centralized system in a following year. The scale normalization we consider is to set the
standard deviation of the unobserved shock εij to 1.9

3.2 Beliefs: Rational Expectations

As we discussed in Section 2.3, students not only care about the utility they derive from each
program, but also about the probability of being admitted in those programs. Estimating
these probabilities is a complex task, since students have no information about other students’
preferences and scores. However, the cutoff structure of the mechanism (see Section 2.1) allows
to summarize all the relevant uncertainty faced by each student in a distribution over cutoffs.

8Depending on the simulation exercise that we will perform later, we will also work with an alternative
normalization, normalizing the systematic part of the utility of being unassigned to 0.

9We also consider an alternative normalization that is common in the school choice literature, setting the
coefficient of distance to -1.

17



As a baseline model, we assume that students have rational expectations about their admission
probabilities. In particular, we assume that students know the distribution of indirect utilities
as well as the strategies used by other students when submitting their ROLs. Hence, students
can infer the conditional distribution of reports. In addition, we assume that students know
the distribution of scores, and combining these two sources of information they can infer the
distribution of cutoffs. We will further assume that students take these distributions to be
independent across programs. These considerations are summarized in Assumption 2.

Assumption 2. Students have rational expectations over their admission probabilities and take
the distributions over cutoffs to be independent across programs.

Agarwal and Somaini (2018) show that a consistent estimator of these beliefs can be obtained
using the following bootstrap procedure:

• For each bootstrap simulation b = 1, . . . , B,

– Sample with replacement a set N b of N students with their corresponding ROLs and
scores.

– Run the mechanism to obtain the allocation µb.

– Obtain the set of cutoffs
{
P bj

}
j∈J

from the allocation µb, i.e. for each j ∈ J ,

P bj = min
{
sij : i ∈ N b, µb(i) = j

}
• We can estimate the admission probability of student i ∈ N in program j ⊂ J as

p̂ij =
1

B

B∑
b=1

1{sij≥P b
j }

We estimate these probabilities running B = 10, 000 bootstrap simulations. The bootstrapped
realizations of cutoffs show positive but small correlations among programs that students tend
to rank together in their application lists. However, Assumption 2 states that students don’t
take into account this dependency to form their beliefs over their admission probabilities. Thus,
they infer their admission probabilities from the marginal distributions of cutoffs.

3.3 Optimal Portfolio Problem

The portfolio problem for college applications was introduced by Chade and Smith (2006).10

In this problem, a student must choose a subset S of colleges to which to apply for admission,
incurring in an application cost c(S). Formally, let R be the set of possible ROLs. Consider a
fixed student i ∈ N and let U : R → R be a function that, for each ROL R ∈ R, returns the
expected utility given a set of beliefs on admission probabilities {pj}j∈M and a set of indirect

10This problem is a particular case of the simultaneous selection problem presented in Olszewski and Vohra
(2016).
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utilities {uj}j∈M .11 Then, given Assumption 2 and a ROL R = {r1, . . . , rk},

U(R) = zr1 + (1− pr1) · zr2 + . . .+
k−1∏
l=1

(1− prl) · zrk , (3.2)

where zj = uj · pj for each j ∈M .

The problem faced by student i ∈ N is to choose a ROL R ∈ R without exceeding the maximum
number of applications K, in order to maximize his expected utility U(R), given his indirect
utilities {uj}j∈M , his beliefs over admission probabilities {pj}j∈M and application costs c(R),
i.e.

R ∈ argmax
R′∈R,|R′|≤K

U(R′)− c(R′). (3.3)

Chade and Smith (2006) show that the optimal portfolio problem is NP-Hard. However, when
admission probabilities are independent12 and the cost of applying to a subset of programs S only
depends on its cardinality, i.e. ci(S) = c(|S|) for some function c, the unconstrained problem is
Downward Recursive and the optimal solution is given by a greedy algorithm called Marginal
Improvement Algorithm (MIA).

MIA: Marginal Improvement Algorithm (Chade and Smith (2006))

• Initialize S0 = ∅

• Select jn = arg maxj∈M\Sn−1
{U(Sn−1 ∪ j)}

• If U(Sn−1 ∪ jn)− U(Sn−1) < c (Sn−1 ∪ jn)− c (Sn−1), then STOP.

• Set Sn = Sn−1 ∪ jn

MIA recursively adds programs that give the highest marginal improvement to the portfolio, as
long as they exceed the marginal cost of adding them. Olszewski and Vohra (2016) show that
MIA also returns the optimal ROL when the number of applications is constrained and when
c(S) is supermodular.

In our setting, there is no monetary application cost, i.e. c(R) = 0,∀R ∈ R. However, Assump-
tion 1 implies that a student will not include a program to the portfolio unless the marginal
improvement is strictly greater than 0. In order to account for this, we need to modify MIA’s
stopping criterion:

MIA + A1: If U(Sn−1 ∪ jn)− U(Sn−1) ≤ c (Sn−1 ∪ jn)− c (Sn−1) = 0, then STOP.

Clearly A1 does not affect the optimality of MIA because the value of the portfolio does not
change when the marginal improvement of adding a new program is zero.

11We omit the dependency on the index i to simplify notation.
12Notice that in our case we have assumed in Assumption 2 independence of beliefs on admission probabilities.
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3.3.1 One-Shot Swap optimality

The fact that an observed ROL R is optimal provides information about the utilities that are
consistent with its optimality. In particular, as students are utility maximizers, an observed
ROL R is the one that maximizes student i’s expected utility, i.e.

U(R) ≥ U(R′), ∀R′ ∈ R,

and when the number of applications is constrained to at most K preferences, an observed ROL
R satisfies

U(R) ≥ U(R′), ∀R′ ∈
K⋃
l=1

Rl, (3.4)

where Rk is the set of ROLs of length k, for k ∈ N+.

For a fixed set of beliefs on admission probabilities, Equation 3.4 characterizes the set of utilities
u = {uj}j∈M that rationalizes the submitted ROL R to be optimal. However, as the set of
possible ROLs grows exponentially, the constraints imposed by Equation 3.4 cannot be used
without running into the curse of dimensionality.

Let S(R) be the set of ROLs R′ which differ in only one program relative to R, i.e.

S(R) =
{
R′ ∈ R|R| :

∣∣R ∩R′∣∣ = |R| − 1
}
.

We call the ROLs in S(R) One-Shot Swaps (OSS) from ROL R. Notice that any utility maxi-
mizing ROL R = {r1, . . . , rk} satisfies two conditions:

• ur1 ≥ ur2 ≥ . . . ≥ urk , and

• prj > 0 for each j = 1, . . . , k.

Therefore, we can without loss of generality restrict our attention to those OSS that satisfy these
conditions.13

Example 3.1. Suppose that K = 3, R = {ABC}, M = {A,B,C,D} and that pj > 0 ∀j ∈M .
Then,

S(R) = {ABD,ADB,DAB,ACD,ADC,DAC,BCD,BDC,DBC} .

In Proposition 1 we show that it is sufficient to consider constraints involving one-shot swaps in
order to ensure the optimality of ROL R.

Proposition 1. Let R = {r1, . . . , rk} be a ROL of length at most K, i.e. k ≤ K. If

U(R) ≥ U(R′), ∀R′ ∈ S(R) (3.5)

then

U(R) ≥ U(R′), ∀R′ ∈
K⋃
l=1

Rl (3.6)

13A ROL R′ that does not satisfy these conditions will be weakly dominated by another ROL that is either
re-ordering or a subset of the elements of R′.
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Proof. See Appendix A.

Notice that the cardinality of the set S(R) is just |R|2 × (M − |R|), because we can replace any
of the |R| programs in R with one of the M−|R| programs not in R and list that program in |R|
different positions. Thus, the number of inequalities grows linearly with the number of programs,
reducing considerably the number of inequalities required to characterize preferences.

4 Data

Our dataset spans from 2012 to 2014, and includes students’ scores, the admission weights for
each program, restrictions for applicants, and the final assignment. In addition, we have stu-
dents’ socioeconomic characteristics, including self-reported family income, parents education,
municipality where the student lives, among others.

We complement the previous data with information about the characteristics of the universities
and programs inside the centralized system, including tuition, duration, major, and programs’
location. We also have aggregate information about the labor market prospects of each program,
like post-graduation expected income and employment probability.

Tables 4.1 and 4.2 show aggregate statistics about the admission processes from 2012 to 2014.

Table 4.1: Aggregate Statistics Admission Process 2012-2014

2012 2013 2014

Participants1 280,049 280,510 278,736
Applicants 116,336 118,212 119,161
Effective Applicants2 106,719 107,550 106,804
Assigned 93,574 95,304 95,568
Universities 33 33 33
Programs 1,335 1,395 1,419
Vacancies3 113,231 112,608 110,380

1 Students who register to take the PSU tests in the cur-
rent year and/or who can participate in the current ad-
mission process using their previous year scores.
2 Students who submit a ROL with at least one valid ap-
plication.
3 Does not include vacancies for the affirmative action
track (BEA process).
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Table 4.2: Students’ Demographics Admission Process 2012-2014

2012 2013 2014

Applicants 116,336 118,212 119,161

Gender Female 52.6 % 52.2 % 52.8%

Average
Scores

Math/Verbal1 574.9 572.5 569.6
NEM2 583.3 581.8 583.6
Rank3 0 604.5 609.6

Income4

[0,$288] 40% 36.7% 33%
[$288,$576] 25.6% 27.2% 28.3%
[$576,$1,584] 22% 23.1% 24.8%
>$1,584 12.4% 13% 14%

High-School
Private 18.7% 18.5% 18.5%
Voucher5 52.5% 53.5% 53.5%
Public 28% 27.3% 27.3%

1 Score constructed with the average Math score and Verbal score.
For students using scores from previous year, we considered the
maximum of both averages.
2 Score constructed with the average grade along high-school.
3 Score constructed with the relative position of the student among
his/her classmates.
4 Gross Family monthly income in thousands Chilean pesos (nom-
inal). Ranges are constructed by grouping income categories pro-
vided by DEMRE. As a reference point, according to CASEN sur-
vey, for 2013 the average autonomous monthly family income of
the sixth decile was $573,981 Chilean pesos.
5 Partially Subsidized schools.

5 Identification

As the Chilean mechanism has a cutoff structure and we have constructed beliefs as described in
Section 3.2, our model belongs to the general class of models described in Agarwal and Somaini
(2018). Under certain conditions, it is possible to obtain non-parametric identification using two
sources of variation: (1) including a “special regressor”; and (2) using variation in the choice
environment.

The “special regressor” is a covariate that varies between students and programs, that enters ad-
ditively into the utility function, and that is orthogonal to unobservables. Agarwal and Somaini
(2018) propose geographic distance between the school and the student’s home as a “special re-
gressor” in their school choice application. In our setting, distance between students’ homes and
the location of the program they are applying to will also help to identify preferences. However,
given that we only observe the municipality of students’ homes address and the municipality
where programs are located, our measures of distance are rather coarse. Moreover, how impor-
tant is geographic distance within a city for determining students’ choices is unclear. This will
likely impact in a lack of identifying variation compared to the school choice setting in which,
arguably, distance can be a more important driver for students’ (or parents’) choices.
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To complement the previous source of identification, we use variation in the choice environment
faced by students from 2012 to 2014, exploiting a particular feature of the Chilean system: every
year, programs can change the weights they assign to each admission factor.14 As explained
before, to apply to a program students undergo a series of standardized tests including Math,
Language, and a choice between Science or History, providing a score for each of them. In
addition to the PSU scores, students also obtain a score that depends on their average grade along
high-school (Notas de Enseñanza Media or NEM). Finally, starting in 2013, students receive an
additional score that depends on the relative position of the student among his/her cohort
(Ranking de Notas or Rank). To evaluate the effects of this new factor, CRUCH established
that every program had to assign a weight of 10% to the rank score in 2013. In 2014 this
restriction was removed, and each program was allowed to choose any weight between 10% and
40%. The inclusion of the rank score in two stages generates variation in the admission weights
for each program, which translates into an exogenous variation in the admission probabilities
that students faced in those years.

Table 5.1 shows the mean variation of each admission weight between 2012 and 2013, grouped by
university. Universities had to choose, for each program, which admissions weights to decrease
in order to give a weight of 10% to the rank score. From the 33 universities in the centralized
system, more than a third reduced close to 10% the weight for the NEM of their programs.
As the rank score is constructed as a function of NEM15 and both admission scores are highly
correlated, we do not expect a big variation on the admission probabilities between years 2012
and 2013. The main source of variation on admission probabilities comes from the change on
admission weights from 2013 to 2014.

14Weights can vary by program within a given university and also across universities.
15Being equal to the NEM score for all students who are bellow the historical average NEM of their High-

schools. For more details see Larroucau et al. (2015).
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Table 5.1: Variation on Admission weights 2012-2013

Universities Programs with changes in Rank Variation on admission weights1

Rank GPA Math Verbal History Science

PUC 41 10 0 -5.1 -3.5 0 -1.3
PUCV 51 10 -8.1 -0.5 -1.3 -0.1 -0.1
UACH 46 10 -4.6 -1 -3.5 -0.5 -0.5
UAH 25 10 -6.2 -0.4 -2.6 -0.8 -0.6
UAI 10 10 -10 0 0 0 2
UANDES 22 10 -10.7 1.4 -0.7 -1.6 0.7
UANT 34 10 0 -4.9 -5.1 0 0
UBB 39 10 -5.1 -1.3 -2.1 2.2 0.9
UCH 48 10 -10 -0.3 0 0.3 0
UCM 25 10 -5 -2.8 -1 -0.6 -0.6
UCN 40 10 -5 -0.1 -4.9 0 0
UCSC 31 10 -0.5 -2.7 -6.3 -0.5 -0.5
UCT 37 10 -6.5 -1.5 -1.9 0.4 0
UDA 24 10 -13.5 3.8 -0.4 0.2 0.2
UDD 36 10 -10 -0.3 0.3 0 0
UDEC 87 10 -10 0 0 0 0
UDP 26 10 -10 -0.2 0 -0.2 0.2
UFRO 38 10 -10 0 0 0 0
UFT 17 10 -3.8 -2.9 -3.8 0.6 0.6
ULA 27 10 -9.3 0.7 0.2 -0.2 0.7
ULS 35 10 -5.6 0.3 -3.9 0 -0.9
UMAG 22 10 -0.9 -3.4 -3.6 -0.7 -3.4
UMAYOR 50 10 -11.2 0.1 0.4 0.7 0.7
UMCE 22 10 -8.9 -1.8 0.7 0.7 2
UNAB 127 10 -10 0 0 0 0
UNAP 29 10 -0.2 -3.4 -5.7 -0.3 -0.3
UPLA 43 10 -4.7 -0.9 -4.4 -0.5 0
USACH 64 10 5.2 -8 -2 -1.8 -3.9
UTA 39 10 0 -4.2 -5.6 0.1 -0.1
UTAL 23 10 -6.5 -0.9 -0.7 -0.4 -1.5
UTEM 27 10 -9.1 -0.7 0 -0.2 0.2
UTFSM 57 10 0 -10 0 0 0
UV 54 10 -10 0 0.1 0 -0.3
Total 1296 10 -6.1 -1.7 -1.7 -0.1 -0.3

1 Average of absolute difference in programs’ admission weights. Variations do not need to add up to 0 along
each row, because some programs change from requiring exclusively History or Science to requiring either of
them between the two years.

Table 5.2 shows the mean variation of each admission weight between 2013 and 2014 by uni-
versity. We observe an important difference in the mean variation of the weight assigned to the
rank score, ranging from 0 to 30%. On average, there was an increase of 12% in the rank weight
and a decrease of 7.2% in the GPA weight.
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Table 5.2: Variation on Admission weights 2013-2014

Universities Programs with changes in Rank Variation on admission weights1

Rank GPA Math Verbal History Science

PUC 46 7.5 -2.8 -2.4 -0.8 -0.6 -1.1
PUCV 29 4.1 -3.7 -0.3 -0.1 0 0
UACH 50 10 -7.8 -0.4 -0.7 0 -1.1
UAH 21 6.2 -3.3 0.8 -1.9 -1.7 -0.8
UAI 0 0 0 0 0 1.8 1.8
UANDES 8 2 0.2 -0.2 -1.8 0 -0.2
UANT 35 10 -10 0 0 0 0
UBB 40 30 -17.5 -6.1 -4.5 -1.1 -1.5
UCH 50 12.2 -0.5 -3.7 -4.8 -0.5 -2.4
UCM 26 9.4 -0.4 -4.2 -3.1 -0.8 -1.3
UCN 41 5 0 -0.9 -4.1 0 0
UCSC 31 20.3 -12.1 -3.1 -1.8 -2.1 -3.4
UCT 48 30 -12.6 -8.2 -8.8 -0.1 -0.2
UDA 24 8.2 -8.4 0.4 0.2 -0.4 -0.4
UDD 0 0 0 -0.7 0.4 0.3 0.3
UDEC 91 15 -0.7 -7.6 -0.9 -1.4 -4.7
UDP 2 0.4 0 -0.4 0 -1.8 -1.6
UFRO 39 10 0 -3.2 -4.6 -1.5 -1.2
UFT 7 1.6 0 -0.9 -0.5 -0.2 -2.3
ULA 25 30 -20 -4.8 -4.8 -1 -0.2
ULS 28 6.2 -2.6 -1.1 -1.6 -0.4 -0.9
UMAG 22 10 -5.7 -2.3 -1.1 -0.7 -0.2
UMAYOR 26 6.2 -3.2 -2.2 -1.1 0.3 0.3
UMCE 11 7.3 -6.1 -0.9 -0.5 2.5 0
UNAB 38 5.7 -4.6 -1.1 -0.2 -1.8 -0.4
UNAP 31 30 -27.1 -0.3 -0.6 1.5 0.3
UPLA 36 6.8 -6.2 -2.9 1 1.8 1.3
USACH 64 30 -24.4 -0.4 -1.2 0 -3.8
UTA 40 30 -30 1.1 0.4 -1.5 -1.5
UTAL 28 15 -8 -1.6 -5.5 -0.7 0.9
UTEM 0 0 0.6 -0.4 -0.8 0.6 0
UTFSM 59 10 -10 0 0 0 0
UV 51 10.1 -7.1 -1.1 -1.2 -1.1 -2.2
Total 1047 12 -7.2 -2 -1.6 -0.5 -1

1 Average of absolute difference in programs’ admission weights. Variations do not need to add up to 0 along
each row, because some programs change from requiring exclusively History or Science to requiring either of
them between the two years.

We assume that the variation in admission weights does not affect the overall distribution of
indirect utilities between those years (conditional on observable characteristics). In this way we
rule out the possibility that students could have forecast this change and decided to postpone
their admission decisions, or the possibility that students have preferences that depend on the
admission weights (for instance, a program choosing a high rank score could be associated with
a high equity concern, which could be valued by students). The variation on the admission
weights changes the weighted scores and shifts the admission probabilities faced by similar
students, allowing us to identify their preferences by looking at the variation on the submitted
ROLs between those years, or more precisely, by looking at the variation on the implied lotteries
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over assignments.

Formally, following Agarwal and Somaini (2018), let C(R|t, Z, d, ξ) be the set of indirect utility
vectors u that rationalizes ROL R to be the optimal ROL in the choice environment t, conditional
on the vector of observable characteristics Z, the vector of distances d and vector of unobserved
characteristics ξ. For the remaining analysis we fix Z, d and ξ, and to simplify notation drop
them from the conditional set. We can write the likelihood of observing a ROL R as

P(R|t) = P
(
R = argmax

R′∈R
U(R′)

∣∣t; fu) =

∫
1{u ∈ C(R|t)}fu(u)du. (5.1)

The variation in the choice environment allows us to identify the distribution fu(u) by looking
at the difference in likelihood of reporting R:

P(R|t+ 1)− P(R|t) =

∫
(1{u ∈ C(R|t+ 1)} − 1{u ∈ C(R|t)})fu(u)du. (5.2)

Changes in admission weights, will change the admission probabilities of students with similar
observable characteristics, changing the set of indirect utilities for which reporting the ROL R is
optimal. Equation 5.2 shows that if we have enough variation we will trace out the conditional
distribution of indirect utilities and point identify the parameters. Notice, though, that both
Equations 5.1 and 5.2 implicitly assume that given a vector of indirect utilities u, there is a
unique optimal ROL R. However, uniqueness does not hold if students face degenerate admission
probabilities for some programs. In the next section we describe how to adapt the identification
argument to that case.

5.1 Degenerate admission probabilities

There are at least two reasons why students may have degenerate beliefs on their admission prob-
abilities. First, several programs impose admissibility requirements, such as minimum weighted
scores, minimum average between math and verbal scores, among many others. These require-
ments must be satisfied by the student to be eligible, so students that do not satisfy them have
probability zero of being assigned to those programs. Nevertheless, DEMRE still allows stu-
dents to apply to programs for which they do not meet all the requirements and notifies them
during the application process that they are not eligible for those programs. Also, as discussed
in Section 2.2, the amount of uncertainty that some students face is moderate, so students with
very low or high scores can anticipate very accurately that their admission chances are 0 and 1
respectively for some programs.

The degeneracy of beliefs on admission probabilities raises a potential identification concern, as
there could be multiple equilibria due to multipliciy of best responses. For instance, if a student
reports optimally a short-list ROL, it would be payoff equivalent to report the same ROL but
adding a program for which she faces an admission probability of zero. Also, if a student faces
an admission probability of one to some program listed in her ROL, it would be payoff equivalent
to add no programs below it on her list. This issue is analyzed in detail in He (2012) for the
school choice system in Beijing. As the author explains: “Multiplicity in best responses implies
multiple equilibria and thus creates challenges for empirical analysis because choice probabilities
of actions can no longer be characterized.”. In the presence of degenerate beliefs, the model is
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incapable of predicting a unique distribution of ROLs conditional on preferences, and it is said
to be incomplete à la Tamer (2003).

As stated before, Equations 5.1 and 5.2 do not take into account the issues of the multiplicity
of best response raised by He (2012). To account for this, let L(R) ∈ ∆J be the lottery over
assignment implied by reporting ROL R and let ω(R|u, t) ∈ [0, 1] be the mixing probability of
reporting an optimal ROL R given the indirect utility vector u and the choice environment t. In
addition, define the set RL(R) as the set of ROLs that imply the same lottery over assignment
than reporting ROL R, that is, RL(R) ≡ {R′ st L(R′) = L(R)}. The mixing probabilities must
satisfy then the following equation

∑
R′∈RL(R)

ω(R′|u, t) = 1 ∀u,R, t. (5.3)

We can now rewrite Equations 5.1 and 5.2 allowing for multiplicity of best response:

P(R|t) =

∫
1{u ∈ C(R|t)}ω(R|u, t)fu(u)du, (5.4)

and

P(R|t+1)−P(R|t) =

∫
(1{u ∈ C(R|t+1)ω(R|u, t+1)}−1{u ∈ C(R|t)ω(R|u, t)})fu(u)du. (5.5)

Equation 5.5 illustrates the identification problem: when there is multiplicity of best responses
and students are mixing over payoff equivalent ROLs, the variation on the shares of submitted
ROLs over time could be driven by variations in the choice sets C(R), but also by changes in
the mixing probabilities over time. Therefore, without imposing assumptions on these mixing
probabilities, the identification argument cannot rely only on the variation on submitted ROLs.

Even though there is multiplicity of best response in our setting, it is possible to restore com-
pleteness in the model if we define the likelihood of students choosing a lottery over assignments
instead of choosing a ROL,

P(L|t) =

∫
1{u ∈ C(L|t)}ω(L|u, t)fu(u)du. (5.6)

where C(L|t) is the set of indirect utilities that rationalize the optimality of lottery L in the
choice environment t and ω(L|u, t) is the mixing probability of choosing lottery L given the
indirect utility vector u in choice the environment t.

If we restrict attention to distributions of preferences that have no atomic masses, the proba-
bility that two different lotteries are payoff equivalent is zero, which implies that ω(L′|u, t) =
1 ∀L′, u, t. In other words, all ROLs that are payoff equivalent must imply the same lottery
over assignments. Therefore, we can identify the distribution of indirect utilities using variation
in the set of lotteries implied by observed ROLs.

Notice that in the presence of zero admission probabilities, we will not be able to non-parametrically
identify preferences, as Agarwal and Somaini (2018) show in their setting. For instance, if pref-
erences depend on students’ scores (without any parametric restriction), we cannot disentangle
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whether low score students do not rank selective programs because their beliefs are zero or be-
cause they prefer other programs. In this sense, we need to place some parametric restrictions on
preferences. However, as the variation we are exploiting in the data is on the admission weights
over time and not on the scores themselves, we will get variation over time in the set of lotteries
for students with the same set of scores, but this variation will not be over all the support of
scores for each program.

6 Simulations

In order to test our hypothesis and show whether assuming truth-telling can lead to biased
results, we perform a series of Monte Carlo simulations changing the data generating process
(DGP) and the assumptions we use for estimation. For this analysis we assume a simplified
version of students’ preferences and sub-sample the data to reduce computational problems.

Consider the following specification for students’ preferences:

uij = Zijβ + εij , (6.1)

where Zij = [zij1, ..., zij5] is a 1 × 5 row vector. The respective covariates are 1, yearly tuition
of program j, last year cutoff for program j, weighted score of student i in program j and
distance between student i’s municipality and programs j’s municipality. The distance metric
is constructed by taking the geographic distance between the centroids of those municipalities.
We choose this specification because it is simple and includes a covariate that exhibits variation
at the student and also at the program level16.

To further simplify the analysis, we sub-sample the data and look at one major between years
2013 and 2014. As the skipping pattern was clearly observed for students who reported Medicine
in their first preference, we select all the Medicine programs present in both years, having a total
of 22 programs. In order to be consistent with the real application patterns, we select all the
students who applied to Medicine in some preference in those years (close to 14,000 students).
Table 6.1 shows descriptive statistics for the 22 programs selected in the sample.

16In section 8 we consider a richer preference specification and estimate parameters with the reported ROLs.
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Table 6.1: Aggregate Statistics Medicine Programs 2013-2014

2013 2014

Program ID City Tuition* Cutoff %Rank Tuition* Cutoff %Rank
1 ANTOFAGASTA 4,377,000 714.5 10 4,478,000 716.7 20
2 CONCEPCION 4,590,000 734.6 10 4,990,000 746.25 30
3 CONCEPCION 4,506,000 745.4 10 4,642,000 758.95 25
4 COQUIMBO 4,001,000 719.2 10 4,148,000 715.7 15
5 SANTIAGO 3,738,640 760.1 10 4,019,000 773.3 40
6 SANTIAGO 5,922,752 729.2 10 6,171,570 725.3 10
7 SANTIAGO 5,728,253 755.55 10 5,809,163 755.15 15
8 SANTIAGO 6,219,000 743.2 10 6,570,000 735.6 10
9 SANTIAGO 5,940,000 702.45 10 6,144,000 701.1 10
10 SAN FELIPE 4,130,000 735.6 10 4,304,000 740.2 20
11 SANTIAGO 4,605,500 774.45 10 4,835,700 783.15 30
12 SANTIAGO 5,385,000 787.85 10 5,487,000 790.45 20
13 SANTIAGO 5,823,000 716.7 10 6,091,000 712.7 10
14 SANTIAGO 6,200,939 703.5 10 6,448,977 736.75 40
15 TALCA 4,578,900 720.2 10 4,647,600 738.3 25
16 TALCA 4,510,000 714.45 10 4,720,000 723.1 20
17 TEMUCO 5,922,752 694.6 10 6,171,570 720.9 30
18 TEMUCO 3,881,000 732.8 10 4,076,000 742.95 20
19 VALDIVIA 3,998,000 737.85 10 4,090,000 745.65 20
20 VALDIVIA 3,998,000 728.55 10 4,090,000 738.6 20
21 VALPARAISO 4,130,000 752.1 10 4,304,000 754.6 20

22 VIÑA DEL MAR 5,146,780 710.7 10 5,352,651 745.45 40

* Yearly tuition in Chilean pesos (nominal).

Notice that there is an important variation between 2013 and 2014 in the admission weight
allocated to the rank score, which will help us to better identify the model. Also, most of the
cutoffs are above 700 PSU points, which is almost two standard deviations above the median
score in the pool of participants in the system.

Table 6.2 shows aggregate statistics for the sample of students that apply to at least one Medicine
program in 2013 or 2014.
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Table 6.2: Aggregate Statistics Students Applying to Medicine 2013-2014

2013 2014

Applicants
Total1 7,020 7,313
With 0 Probability2 3,338 3,575
Final Sample3 3,682 3,738

Application
Scores

Mean 673.31 680.1
Median 685.6 693.12
Standard deviation 73.79 72.7

1 Students who applied to at least one Medicine program.
2 Students who applied to at least one Medicine program
and have admission probabilities of zero for all Medicine
programs.
3 Students who applied to at least one Medicine program
and face positive admission probabilities for at least one
Medicine program.

We observe that roughly half of the students face admission probabilities equal to 0 for every
program in the sample, even though they listed one of these programs in their actual application
list. This suggests that Assumption 1 and 2 do not hold for every student, either because some
of them report truthfully and/or because their beliefs over admission probabilities are not given
by rational expectations.

6.1 Assuming truth-telling

To test whether assuming truth-telling can result in biased estimates (if students report strate-
gically and A1 and A2 hold), we simulate data using the previous specification under three
different DGPs:

• DGP1: students do not take into account their admission probabilities and report no more
than K of their most preferred programs.

• DGP2: students report strategically strictly less than K programs (short list students),
maximizing their expected utility of their portfolios, and A1 and A2 hold.

• DGP3: students report strategically no more than K programs, maximizing their expected
utility of their portfolios, and A1 and A2 hold.

For DGP1 and DGP2 we consider the shocks to follow a Type I Extreme Value distribution with
location parameter 0 and scale parameter 1. We label the outside option as program 23, and
normalize its systematic utility to 0. We force students to include the outside option in their
portfolios and we assign an admission probability equal to 1. Therefore, under DGP2 students
won’t include programs that are bellow the outside option, that is, if their value is less than or
equal to εi0.

Data under DGP1 can be simply generated by ordering the indirect utilities for each student and
reporting at most K of the programs for which the payoff is not bellow the outside option. Data
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under DGP2 can be generated using MIA + A1, making sure that K is not binding. Finally,
for DGP3 we normalize the indirect utility of the outside option to 0. For the unobserved shock
we choose a multivariate Normal distribution17 with mean 0 and variance covariance matrix σ2I
and normalize σ = 118. As with DGP2, data can be generated using MIA + A1.

6.2 Likelihoods

To show that we can recover the parameters assuming truth-telling if we assume DGP1 is the
truth, we construct the likelihood of observing a ROL R under truth-telling. As we have chosen
the error terms to be Type I Extreme Value, the likelihood has the form of a ranked-ordered (or
exploded) logit. Given the Independence of Irrelevant Alternatives assumption, the likelihood
can be seen as sequentially choosing the best available program in the choice set, until either
no program is above the outside option or we have reached the capacity constraint of K. For
simplicity let uij ≡ ūij + εij , then

P (Ri|DGP1) =
exp(ūiRi(1))∑
j∈J

exp(ūij)
×

exp(ūiRi(2))∑
j∈J\{Ri(1)}

exp(ūij)
×...×

exp(ūiRi(|R|))∑
j∈J\{Ri(1),...,Ri(|R|−1)}

exp(ūij)
×Vi (Ri(|R|))

(6.2)

where

Vi (Ri(|R|)) ≡

1 if |Ri| = K
1∑

j∈J\{Ri(1),...,Ri(|R|)}
exp(ūij) o.w (6.3)

Notice that we can only infer, under DGP1, that programs not listed in the ROL are less
preferred than the outside option, if the length of the ROL is strictly less than K.

Under DGP2, students take into account their admission probabilities and solve their optimal
portfolio problem. When A1 holds, students will only include programs for which their marginal
benefit is strictly greater than 0. This implies that (i) students will not include programs for
which their assignment probabilities are 0 and (ii) students will not include programs below
a listed program for which their admission probability is 1. Moreover, as we generate ROLs
for which the restriction in the length of the list is not binding, the portfolio problem reduces
to simply include programs with the highest indirect utilities, conditional on having a positive
probability of admission and being more preferred than the outside option. The implies that
the likelihood under DGP2 can be written as:

17We change the distribution of the shock for this DGP to be consistent with our proposed estimation method.
18Notice that we are restricting the variance covariance matrix, thus the model under this specification is over

identified.

31



P (Ri|DGP2) =
exp(ūiRi(1))∑
j∈J̃i

exp(ūij)
×

exp(ūiRi(2))∑
j∈J̃i\{Ri(1)}

exp(ūij)
×...×

exp(ūiRi(|R|))∑
j∈J̃i\{Ri(1),...,Ri(|R|−1)}

exp(ūij)
×Vi (Ri(|R|))

(6.4)
where

Vi (Ri(|R|)) ≡

1 if piRi(|R|) = 1
1∑

j∈J̃i\{Ri(1),...,Ri(|R|)}
exp(ūij) o.w (6.5)

and J̃i ≡ {j ∈ J : pij > 0}. Notice that students will only consider programs for which their
believed admission probabilities are strictly positive. Hence we cannot identify how much they
like programs for which their admission probabilities are 0.

6.3 Gibbs’ Sampler

It is not possible to write down a likelihood in closed form for DGP3. This is not only because we
have chosen a different distribution for the unobserved shocks, but more importantly, because
under DGP3 we allow students to report constrained ROLs. When the ROL is constrained,
students take into account their admission probabilities not only to include programs for which
the marginal benefit is bigger than 0, but also to decide which programs to include in the
portfolio if they reach the capacity constraint. Under A2, the solution to this problem is given
by MIA. Thus, we exploit its structure to characterize the optimal solution and adapt the
estimation procedure proposed by Agarwal and Somaini (2018). The challenge is to obtain
unbiased estimates without running into the curse of dimensionality.

In the Gibbs’ Sampler approach to estimate discrete choice problems (McCulloch and Rossi
(1994)), we obtain draws of the parameters from the posterior distribution by constructing a
Markov chain of draws starting from an initial set of the parameters. The posterior mean of
this sampler is equivalent to the MLE estimator of the parameters β, σ2 given the priors and
the data.

To initialize the sampler we pick, for each student i, a utility vector u0
i that is consistent with the

observed ROL Ri to be the optimal choice. We then construct the Markov Chain sampling from
the conditional posteriors of the parameters and the utility vectors, conditional on the previous
draws. In order to pick the initial vector of utilities (Step 0) and to draw from the conditional
posterior of the vector of utilities (Step 2), we must be able to characterize the set of indirect
utilities C(Ri) that is consistent with Ri being optimal.

Agarwal and Somaini (2018) do this by constructing a matrix that encodes all possible pairwise
comparisons between the chosen ROL Ri and any other ROL R′ ∈ R that student i could
have submitted instead. In their application, students cannot rank more than 3 schools out
of 13 available in the system, which gives them 1,885 pairwise comparisons. However, in the
Chilean College Admissions’ problem students can rank up to 10 programs out of more than
1,400 alternatives, which gives more than 1024 possible ROLs, making impossible to encode a
matrix with all comparisons.

We exploit the fact that, under A1 and A2, the optimal solution to the portfolio problem is
given by MIA and Proposition 1 holds. This additional structure enables us to characterize
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the set C(Ri) without running into the curse of dimensionality. Basically, we construct a low-
dimensional matrix Ai(Ri) with a sufficient set of inequalities that the indirect utilities need to
satisfy in order for Ri to be the optimal ROL for student i, without the need of comparing every
possible ROL:

ui ∈ C(Ri) ⇐⇒ Aiui ≥ 0 (6.6)

Case 1: |Ri| < K

As we have shown before, if |Ri| < K the optimal portfolio must include the programs with the
|Ri|-th highest utilities among the ones for which student i has positive admission probabilities,
i.e.:

uij ≥ uij′ ∀j ∈ Ri, j′ /∈ Ri, st : pij′ > 0. (6.7)

Also, as the outside option has been normalized to 0 and it is interpreted to be the option value
of being unassigned, it must be that

uij ≥ ui0 ∀j ∈ Ri. (6.8)

Finally, the marginal benefit of including any other program in the portfolio must be less than
or equal to 0. As we have not reached the capacity constraint, this can happen either because
none of the programs with positive probability exceeds the outside option, or because student i
has admission probability of 1 for the last listed program:

if piRi(|Ri|) < 1⇒ ui0 ≥ uij′ ∀j′ /∈ Ri, st : pij′ > 0 (6.9)

After the student has chosen the programs to include in his portfolio, it is always optimal to
order them in decreasing order of utilities (Haeringer and Klijn (2009)), thus we further know
that:

uiRi(1) ≥ uiRi(2) ≥ ... ≥ uiRi(|Ri|) (6.10)

With all these inequalities we can write down the matrix Ai for any student such that |Ri| < K.
Inequalities given in Equation 6.7 can be represented with a 1 × M row vector with a 1 in
the j-th component, a −1 in the j′-th component and zeros otherwise. Similarly, inequalities
defined in Equations 6.8 and 6.9 can be represented with 1 ×M row vectors, with a 1 in the
j-th component and zeros otherwise and with a -1 in the j-th component and zeros otherwise,
respectively. Finally, inequalities defined in Equation 6.10 can be represented with |Ri| − 1
row vectors of dimension 1 ×M , with a 1 in the Ri(k)-th component, a -1 in the Ri(k + 1)-th
component and zeros otherwise, for k = 1, ..|Ri| − 1.

Case 2: |Ri| = K
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In this case, the sets of inequalities given by Equations 6.7 and 6.9 will not necessarily hold.
However, Proposition 1 establishes that it suffices to characterize C(Ri) using only inequalities
given by comparing Ri to One-Shot Swaps of Ri. We can express these inequalities as:

Ui(Ri) ≥ Ui(R′)⇔ uiΠiRi ≥ uiΠiR′ ⇔ (ΠiRi −ΠiR′)ui ≥ 0,

where ΠiR is an (1 ×M) vector with the j-th component being the admission probability of
student i to program j conditional on reporting ROL R. We construct the matrix Ai by stacking
the row vectors (ΠiRi −ΠiR′) and the vectors encoding Equations 6.8 and 6.10.

The key difference with Agarwal and Somaini (2018)’s Gibbs Sampler algorithm is that Propo-
sition 1 allows us to avoid the curse of dimensionality that their implementation would entail in
our setting.

Gibbs sampler:

Consider the following specification for students’ preferences:

uij = Zijβ + εij (6.11)

where εij ∼ N
(
0, σ2

)
, and Zij = [zij1, ..., zijK ] is a 1×K row vector of covariates. The system

can be stacked in order to represent the vector of utilities ui as:

ui = Ziβ + εi (6.12)

where Zi is an M ×K matrix of covariates and εi is an M × 1 vector of shocks. Consider also
the following prior for β :

β ∼ N(β̄, A−1) (6.13)

Step 0 Start with initial values for u0 = {u0
i }Ni=0 such that u0

i ∈ C(Ri) ∀i = 1, ..N , i.e, select u0
i

to be a solution to the following problem:

Aiui ≥ ε (6.14)

with ε a small positive number.

Step 1 Draw β1|u0 from a N(β̃, V ), where

V =
(
Z∗
′
Z∗ +A

)−1
, β̃ = V

(
Z∗
′
u∗ +Aβ̄

)
(6.15)

Z∗ =

Z
∗
1

...

Z∗N

 (6.16)
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Z∗
′
i = C ′Zi, u∗i = C ′u0

i (6.17)

(
σ2I
)−1

= C ′C (6.18)

Where C comes from the Cholesky decomposition of the inverse of the variance covariance
matrix of εi.

Step 2 Iterate over students and schools, drawing u1
i |β1, σ2, Ri. For each school j = 1, ..M , draw:

u1
ij |{u1

ik}
j−1
k=1, {u

0
ik}Jk=j+1, β

1, σ2 (6.19)

from a truncated normal TN(µij , σ
2
ij , aij , bij), where

µij =
K∑
k=1

β1
jkzijk (6.20)

σ2
ij = σ2 (6.21)

The truncation points aij and bij must ensure the draw u1
ij lies in the interior of C(Ri)

given the previous draws, so they are the solutions to the following optimization problems:

aij = max
uij

uij

st. Au ≥ 0

uik = u1
ik ∀k = 1, ..j − 1

uik = u0
ik ∀k = j + 1, ..M

bij = min
uij

uij

st. Au ≥ 0

uik = u1
ik ∀k = 1, ..j − 1

uik = u0
ik ∀k = j + 1, ..M

Given the structure of the optimization problems, we can obtain analytical expressions for
aij and bij . The goal is to compute bounds that must be satisfied by uij conditional on
having the vector

u−ji =
(
uti1, . . . , u

t
i,j−1, u

t−1
i,j+1, . . . , u

t−1
i,|J |

)
For simplicity, we omit index i, as this problem must be solved for each student indepen-
dently. Notice that the constraint Au ≥ 0 can be equivalently written as A−ju−j ≥ −Ajuj ,
where A−j is matrix A without column j, and Aj is matrix A’s column j. As the term
A−ju−j is fixed and known, we can manipulate this expression to isolate uj , which allows
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us to obtain inequalities that the vector of indirect utilities must satisfy to rationalize the
observed ROL. After some manipulation we get that

aj = max
k∈{k:Akj>0}

−A−jk u−j

Akj

bj = min
k∈{k:Akj<0}

−A−jk u−j

Akj

where A−jk is matrix A−j ’s k-th row and Akj is the k-th element of column Aj .

Step 3 Set u0 = u1 and repeat steps 1-2 to obtain a sequence βk.

Notice that we do not need to solve the optimization problems for the bounds aij and bij for every
student i. We only need to do so for students who submit a constrained ROL because the bounds
for the unconstrained ROLs can be inferred from the set of inequalities, after conditioning on
the previous draws. Moreover, even for constrained ROLs we do not need to solve this problem
for both bounds for every program j. For example, it is clear that the bounds for all programs
j such that pij = 0 are (−∞,+∞) and that the upper bound for the first listed program is +∞,
regardless of the realizations of the previous draws.

We describe in Appendix B a multivariate version of the Gibbs’ Sampler, where we normalize
the coefficient of distance to -1 and allow for an unrestricted variance covariance matrix of the
random shock, using an Inverse Wishart prior.

7 Results

To compare the results across simulations and DGPs, we assume that the true underlying pa-
rameters are β = (1,−1, 2, 1.5,−1). In addition, for most simulations we use K = 10, i.e.,
students can apply to at most 10 programs. For some simulations we choose a smaller K to
make the constraint bind for a larger fraction of students.

7.1 DGP1 vs DGP2

We first show some descriptive statistics on the simulated data under both DGPs using one
simulation. Figure 7.1 shows the distributions of the length of ROLs under both DGPs:
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Figure 7.1: Distribution of Length of ROLs
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Notes: Distribution of the Length of ROLs under DGP1 (left figure) and DGP2 (right figure).

We observe that under DGP1 most students submit ROLs with 10 programs, and thus the
capacity constraint is binding. However, under DGP2 there is an important share of students
submitting ROLs of different lengths, with no student applying to more than 9 programs in their
ROL. This difference can be explained because students under DGP2 do not consider programs
with admission probabilities of 0, which decreases their choice sets compared to DGP1. In
addition, some students face programs with admission probabilities exactly equal to 1, which
implies that, under DGP2, if they include one of such programs in their ROL they won’t include
any program with a lower utility.

To see how choices differ in both DGPs, we analyze programs listed in first preference (we label
the outside option as program 23). Figure 7.3 shows that under DGP1, programs 5, 11 and
12 are the most preferred programs. However, Figure 7.4 shows that if we were to interpret
DGP2 as truth-telling, programs 1, 17, and 9 would be the most preferred ones. This difference
is explained because the most preferred programs under DGP1 (the truth) happen to be the
most selective ones, that is, programs for which most students face an admission probability of
0, which deters students under DGP2 to include them in their ROLs. In addition, if we were
to interpret DGP2 as truth-telling, we would infer that more than 4% of students prefer their
outside option to any Medicine program, although less than 1% prefer it.

We also observe a fair amount of heterogeneity in first choices, even under DGP1. This is mainly
explained by the preference shock, but also because of the heterogeneity induced by the distance
covariate.
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Figure 7.3: First listed preference under DGP1
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Notes: Share of applications in first preference to each program under DGP1. Program 23 is the outside
option of being unassigned.

Figure 7.4: First listed preference under DGP2
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Notes: Share of applications in first preference to each program under DGP2. Program 23 is the outside
option of being unassigned.
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7.2 Monte Carlo Simulations

7.2.1 DGP1 vs DGP2

We run 500 Monte Carlo simulations assuming DGP1 and DGP2. For each simulation under
DGP1 we estimate the model by Maximum Likelihood assuming DGP1 is the truth. For each
simulation under DGP2 we estimate the model assuming DGP2 is the truth. Our goal is to
confirm that the likelihoods are correctly specified and that we recover the parameters if the
model and the DGPs are consistent. Figures 7.5 and 7.6 show the distribution of the estimators
under both DGPs:

Figure 7.5: Monte Carlo under DGP1
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Notes: Monte Carlo simulations under DGP1, estimating parameters with Likelihood approach assuming
DGP1 is the truth. Solid lines are true parameters, dashed lines are the the corresponding means of the
distributions.
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Figure 7.6: Monte Carlo under DGP2
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Notes: Monte Carlo simulations under DGP2, estimating parameters with Likelihood approach assuming
DGP2 is the truth. Solid lines are true parameters, dashed lines are the the corresponding means of the
distributions.

As expected, the distributions of the estimators are centered at the true parameters (solid lines),
so the likelihoods are well specified and the model is identified. We observe that estimates given
by assuming DGP2 are less precise than those obtained by assuming DGP1. This is because
the likelihood under DGP2 includes less information than under DGP1, as the choice sets under
DGP2 consider only programs with positive admission probabilities.

In order to show whether assuming truth-telling can lead to biased results in a strategic environ-
ment, we estimate the model assuming truth-telling on the simulated data under DGP2. Figure
7.7 shows the distribution of the resulting estimators:
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Figure 7.7: Monte Carlo under DGP2, assuming DGP1
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Notes: Monte Carlo simulations under DGP2, estimating parameters with Likelihood approach assuming
DGP1 is the truth. Solid lines are true parameters, dashed lines are the the corresponding means of the
distributions.

We observe a clear bias in the estimated coefficients. Assuming truth-telling, if data is generated
under DGP2, underestimates how preferred are more selective programs compared to other
programs (β4) and compared to the outside option (β1). These results are in line with the
descriptive statistics about the first listed programs. If we include less preference heterogeneity
in our specification, or we control by geographic distance, and data is generated by DGP2,
we would interpret that preferences for programs are very heterogeneous, without taking into
account that this heterogeneity is mainly driven by the heterogeneity in students’ choice sets.

7.3 Gibbs Sampler Results

We now simulate data under DGP3, i.e., allowing students to report constrained ROLs. We set
K = 4 to have a mass (∼ 20%) of students reporting constrained ROLs (similar to what we
observe in the actual data) and run 500 Monte Carlo simulations.
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Figure 7.8: Distribution of Length of ROLs under DGP3
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Notes: Distribution of the Length of ROLs under DGP3.

We estimate preferences using the Gibbs Sampler approach discussed in the previous section.
We burn-in the first 3,000 iterations and construct the posterior distributions given the data
and the priors for the following 2,000 iterations. As standard practice, we choose a diffuse prior

p(β) ∼ N(β̄, A−1), (7.1)

where β̄ = (0, 0, 0, 0) and A−1 = 100 × I. The posterior means converge asymptotically to the
MLE estimators of the simulated sample. Figure 7.9 shows the distribution of the posterior
means for each parameter when data is simulated under DGP3. As expected, there is no bias
in estimation.
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Figure 7.9: Monte Carlo with Gibbs Sampler under DGP3, assuming DGP3
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Notes: Monte Carlo simulations under DGP3. Solid lines are true parameters, dashed lines are the means
of the distributions of posterior means.

7.3.1 DGP3 vs DGP2

To test the effects of ignoring the constraint in the ROLs, i.e., assuming DGP2 when DGP3
is the truth, we run 500 Monte Carlo simulations under DGP3 with K = 4 and estimate the
parameters by Maximum Likelihood, assuming DGP2 is the truth. We present the results in
Figure 7.10.

We observe that if we ignore the constraint on the length of the list and this constraint binds,
estimates are biased. The magnitude of the bias is substantial, even though the fraction of
constrained ROLs is close to 20%. In particular, β1 is downward biased, which can be driven
by assuming in the likelihood that programs that are not reported in the list are less preferred
than the outside option. As we have pointed out before, even for a constrained ROL, the set
of inequalities given by Equations 6.8 and 6.10 hold. This suggests an alternative estimation
method, that considers only these inequalities to construct the contribution to the likelihood
of constrained ROLs. However, as we are not including information about how preferred are
programs not listed in the ROL, estimates will be less precise than the ones obtained by our
Gibbs Sampler approach.
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Figure 7.10: Monte Carlo under DGP3, assuming DGP2
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Notes: Monte Carlo simulations under DGP3, estimating parameters with Likelihood approach assuming
DGP2 is the truth. Solid lines are true parameters, dashed lines are the the corresponding means of the
distributions.

8 Estimation (in progress)

8.1 Preference specification

We estimate preferences from reported ROLs, enriching the previous model to capture unob-
served preferences for majors. In particular, we incorporate a flexible random coefficients model
where unobserved heterogeneity depends both on observable characteristics of the students and
an unobserved components. Let B be the set of available majors,19 and let m(j) ∈ B be the
major corresponding to program j ∈ M . We assume that the latent utility of student i for a
given program j can be parameterized as:

19We refer to majors as the fields of education provided by the International Standard Classification of Ed-
ucation (ISCED) (UNESCO (2012)) that has been adapted to Chile. The modified version of the ISCED fields
used in Chile classifies programs into: Farming, Art and Architecture , Science, Social Sciences, Law, Humanities,
Education, Technology, Health, Management and Commerce.
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uij = ξj + αi,m(j) + βddij +
γ(s̄i − P̄j)

σ̄j
− Cij + εij (8.1)

where ξj is program j’s fixed effect; αi,m(j) is student i’s random coefficient for major m(j); dij
is the distance between student i’s municipality and program j’s municipality; s̄i is student i’s
average score,20 P̄j is the lowest average score for students assigned in program j in the previous
year, and σ̄j is its standard deviation. The coefficient γ captures how much students like a
program depending on their ability relative to students assigned in the previous year. On the
other hand, Cij captures the monetary cost for student i to enroll in program j, given its yearly
tuition tj . We assume that this cost can be modeled as:

Cij = c0tj + c1tj1(low income) + c2tj1(s̄i≥500) + c3tj1(low income)1(s̄i≥500). (8.2)

Notice that we allow for different price sensitivities depending on the level of income and stu-
dents’ scores. In this way, we capture potential credit constraints that may affect lower income
families,21 as well as potential scholarships or financial aids that high-achieving22 students may

have access to. Finally, εij
iid∼ N(0, σ2I) is an idiosyncratic preference shock.

We model the random coefficients as a multivariate regression on a set of students’ observable
characteristics. Let αi ∈ RB be the vector of random coefficients of student i. Then, given a
vector zi ∈ Rd of observable characteristics, we assume that αi is given by:

αi = ∆zi + νi ∼ iid N(0, Vα), i = 1, ..., N (8.3)

where ∆ is a |B|× d matrix of coefficients, and νi is a |B|× 1 vector of idiosyncratic shocks that
follow a multivariate normal distribution with zero mean and variance covariance matrix Vα.

In the matrix of covariates zi we include student i’s scores’ percentiles on each admission factor
and student i’s gender. In this way, we allow for unobserved preferences for majors to be
different for students with different scores23 and gender. In addition, notice that we are not
allowing for an unrestricted variance covariance matrix of the preference shock. Although this is
theoretically possible, the large number of programs in the Chilean setting would lead to a huge
number of parameters to be estimated. Instead, we allow for correlations only among programs
of the same major by introducing the random coefficients αi,m(j).

24 This reduces considerably
the dimensionality of the problem because the matrix Vα has dimensions |B| × |B| and an
unrestricted variance covariance matrix of the preference shock has dimensions |M | × |M |.

20The average is taken over the mathematics and verbal PSU tests.
21Students are defined to be “low income” students if their self reported family income is bellow the median.

Bordon et al. (2015) follow a similar strategy to capture heterogeneous price responsiveness in their model.
22See Bucarey (2017) for more details on the choice of this specific threshold.
23Unobserved preferences for major could be correlated with students’ performance in some admission factors.

For instance, students who have high scores in math could be more likely to have a strong preference for STEM
programs.

24 Another alternative would be to consider a block diagonal variance covariance matrix, keeping the number
of parameters still manageable. However, estimating restricted variance covariance matrices in a Bayesian setting
can be quite challenging. The matrix can no longer be modeled through a Wishart prior and solution methods
involve additional simulation steps that would increase the computational time for our proposed Gibbs sampler
(Chan and Jeliazkov (2009)). We leave this extension for future research.
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8.2 Hierarchical model

To estimate our model, we follow a similar approach than Rossi et al. (2011) and specify a
hierarchical Bayes model. The model is built through a series of conditional distributions. The
lowest level of the hierarchy is the random utility regression model, conditional on the values of
the random coefficients {αi}. The higher levels of the hierarchy are given by successive priors on
the conditional distribution of the random coefficients. The full model combines the following
conditional distributions:

ui|Zi, β, σ2, αi, Ri (8.4)

β|ui, Zi, σ2, αi (8.5)

αi|zi, ui,∆, Vα (8.6)

and the conditional distributions over the hyper-parameters of the random coefficients model:

∆|{αi}, ∆̄, Ad, Vα (8.7)

Vα|{αi},∆, νob, Vob (8.8)

where ∆̄, Ad, Vob and νob are prior parameters for ∆ and Vα (see Appendix C.2 for more details).

Notice that we do not specify a conditional distribution on the variance of the random error,
as we fix σ2 = 1 as a scale normalization. We choose proper but diffuse priors relative to the
likelihood, as it is common practice. We describe the exact form of these distributions and how
we adapt the Gibbs sampler to incorporate random coefficients in Appendix C.

8.3 Sample selection

For computational reasons, we divide the country into three geographical zones,25 and we es-
timate the model separately for each of them.26 Specifically, for each zone, we take a random
sample of 3,000 students and we restrict their choice set to programs located within their zone.
Students who apply to programs outside their zone are dropped from the analysis.27 This is
without major loss, as students tend to apply to programs that are close to their hometowns. For
instance, among students from the Central zone, close to 75% applied only to programs within
their zone (765 programs). Using this approach, we obtain a good balance between heterogeneity
in choices and computational time, making easier to illustrate our methodological results.

25North zone (I, II and III regions), Central zone (IV, Metropolitan, V, VI, and VII regions) and South zone
(VIII, IX, X, XII, XII).

26A similar approach is followed by Bucarey (2017).
27Alternatively, we could drop from their ROLs the programs that do not belong to their residence zone and

use for estimation the inequalities on indirect utilities implied for the remaining programs.
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8.4 Results

8.4.1 Base model

We first estimate preferences for the model without random coefficients, but incorporating the
interaction terms of the major fixed effects and the covariates zi. That is, we assume αi =
∆zi, i = 1, ..., N and use the Gibbs Sampler procedure described in Section 6.3. We burn-in
the first 3,000 iterations and construct the posterior distributions given the data and the priors
for the following 7,000 iterations. As standard practice, we choose proper but diffuse priors
relative to the likelihood. Let β̃ ≡ stack(β, vec(∆)), then the prior is given by

p(β̃) ∼ N(
¯̃
β, Ã−1) (8.9)

where
¯̃
β = 0, Ã−1 = 100× I.

Figure 8.1 shows the posterior distributions for the parameters of interest for the Metropolitan
Region.28 The dotted line shows the mean of each posterior distribution. Due to our scale
normalization, the magnitude of each parameter is in terms of the standard deviation of the
preference shock.

28Due to the estimation of beliefs in the first stage, the standard errors of the parameters must be corrected.
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Figure 8.1: Estimation results with reported ROLs
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Notes: Posterior distributions for estimated parameters in the sample. Distance is measured in kilometers
and program’s tuition is measured in millions of Chilean pesos (nominal).

Interestingly, the term γ, which captures how much students like a program depending on their
ability relative to students assigned in the previous year, is found to be negative. A possible
interpretation of this result is that students, on average, prefer the most selective programs,
regardless of where they stand in the distribution of scores of previously admitted students.
To analyze how students’ preferences for majors vary with demographics, Table 8.1 shows the
posterior mean and standard deviation for the parameters ∆. From these estimates, we can
see important gender effects. Women have a higher mean utility than men for studying Health
programs, and a lower mean utility for studying Technology programs. Also, the mean utility
for majors differs strongly across different score percentiles. As expected, students with a higher
score in History receive a positive utility for studying majors that tend to require History, like
Social Sciences, Law and Humanities; and students with a high score in Science receive negative
mean utilities for studying these majors. These results stress the importance of incorporating
students’ scores in the utility specification to capture preferences for major. Our identification
strategy allows us to incorporate scores as part of preferences because the identifying variation
we exploit is the variation on admission weights over time.
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Table 8.1: Estimates of ∆, base model

Major Female History Science Verbal Math NEM Rank

Art and Architecture 0.066 0.2 -0.55 0.19 1 0.69 -1.2
(0.03) (0.053) (0.06) (0.11) (0.12) (0.49) (0.44)

Farming 0.15 0.098 0.93 0.66 -0.49 -0.62 -0.11
(0.061) (0.091) (0.18) (0.24) (0.28) (0.81) (0.76)

Technology -0.4 -0.033 0.3 -0.47 0.98 -2.9 1.7
(0.02) (0.03) (0.051) (0.084) (0.1) (0.27) (0.25)

Management and Commerce -0.091 0.27 -0.24 -0.8 1 -0.91 0.15
(0.031) (0.051) (0.059) (0.1) (0.11) (0.35) (0.31)

Education 0.16 0.078 -0.71 0.26 -0.01 -0.53 -0.41
(0.032) (0.055) (0.059) (0.11) (0.11) (0.38) (0.35)

Science -0.065 0.032 0.65 -0.3 -0.38 0.28 -1.3
(0.038) (0.057) (0.11) (0.13) (0.18) (0.59) (0.55)

Health 0.55 -0.25 1.3 -0.57 -2.3 -1.9 0.0069
(0.026) (0.035) (0.065) (0.11) (0.13) (0.37) (0.34)

Social Sciences 0.065 0.7 -0.66 0.29 -0.25 -1 -0.051
(0.028) (0.072) (0.047) (0.13) (0.099) (0.37) (0.34)

Law -0.2 0.68 -0.83 0.84 -0.93 -0.52 0.22
(0.068) (0.18) (0.13) (0.25) (0.24) (0.9) (0.81)

Humanities 0.11 0.78 -0.5 1 -0.77 0.62 -1.3
(0.065) (0.16) (0.11) (0.24) (0.21) (0.87) (0.78)

Notes: Estimates are the means of the posterior distributions for the interaction terms between the major
fixed effects (rows) and the covariates in zi (columns). The standrad deviation of each posterior distribution
is given in parenthesis.

9 Conclusions

We analyze the application process in the Chilean College Admissions problem, where the ma-
jority of students do not fill their entire application lists. We find evidence of strategic behavior,
even though students do not face clear strategic incentives to misreport their true preferences.
In particular, students tend to omit programs if their admission probabilities are too low. Under
the assumption that students do not include programs in their application lists if it is not strictly
profitable to do so, we construct a portfolio problem where students maximize their expected
utility of reporting a ROL given their preferences and beliefs over admission probabilities.

In order to better identify the model, we exploit an exogenous variation in the admission weights
over time that is unique to the Chilean system. Assuming rational expectations and indepen-
dence of beliefs on admission probabilities, we show that it is sufficient to compare a ROL with
only a subset of ROLs (“one-shot swaps”) to ensure its optimality. Using this finding we con-
struct a Likelihood-based approach to estimate student preferences, adapting the estimation
procedure proposed by Agarwal and Somaini (2018) to solve a large portfolio problem, without
running into the curse of dimensionality.

We simulate data on portfolio choices using the Marginal Improvement Algorithm under different
DGPs and run Monte Carlo simulations with our proposed estimation methods. We compare our
results against assuming truth-telling of “short-list” students and find biased results. If students
do not include programs for which their marginal benefit is zero but we assume truth-telling
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in estimation, we would underestimate how preferred are selective programs and overstate the
value of being unassigned. Moreover, assuming truth-telling can lead to overstate the degree of
preference heterogeneity in the system. In addition, ignoring the constraint on the length of the
list can also result in biased estimates, even if the proportion of constrained ROLs is relatively
small.

Our proposed estimation method is computationally feasible for large scale portfolio problems
whenever beliefs on admission probabilities can be estimated in a first stage and assumed to
be independent across alternatives. Even though we assume strategic behavior of students to
generate the data, the estimation procedure is also robust when students do not skip programs
if the marginal benefit of including them is zero. Our estimation results strongly suggest that
“short-list” students should not be interpret as truth-tellers, even in a seemingly strategy-proof
environment.

We apply our estimation method to estimate students’ preferences for programs and majors in
Chile and find strong differences in preferences regarding students’ gender and scores. Students,
on average, prefer the most selective programs, regardless of where they stand in the distribution
of scores of previously admitted students. Women, conditional on their admission probabilities,
tend to prefer more programs in health majors and prefer less programs in technology majors
compared to men. Finally, students’ scores matter for understanding their preferences for majors,
stressing the importance of including them in the utility specification.
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Appendix

A Proposition 1

In a slight abuse of notation, we denote by R(k) the k-th preference in ROL R, and by R(j1, j2)
for 1 ≤ j1 < j2 ≤ |R| the subset of ROL R that includes preferences from j1 to j2, i.e. R(j1, j2) =
{rj1 , rj1+1, . . . , rj2}. We will use this notation in the proof of our main Proposition.

Proposition 1. Let R = {r1, . . . , rk} be a ROL of length at most K, i.e. k ≤ K. If

U(R) ≥ U(R′), ∀R′ ∈ S(R) (A.1)

then

U(R) ≥ U(R′), ∀R′ ∈
K⋃
l=1

Rl (A.2)

Proof. We proceed by induction on the maximum number of programs allowed in a ROL, K.
Basis Notice that Proposition 1 trivially holds for K = 1. Thus, we consider as basis K = 2.
Suppose that ROL R = AB is optimal. Equation A.1 implies that U(R) ≥ U(R′), ∀R′ ∈
S(R) = {AX,XA,BX,XB : X ∈M \R}. Then, to show the optimality of R it remains to
show that U(R) ≥ U(XY ) for any X,Y ∈ M \ R. From Equation A.1 we know that zB >
zj ∀j ∈ M \ R, we know that U(XB) > U(XY ), and since U(R) = U(AB) ≥ U(XB) we
conclude that Equation A.2 holds in this case.

Step In the induction step we must show that if Proposition 1 holds for ROLs of length at most
K = k, then it must also hold for K = k + 1. To show this, we first show that if R ∈ Rk+1

satisfies Equation A.1, then there exists a subset Rk ⊂ R of length k that satisfies Equation A.1
for K = k. Then, using the inductive hypothesis we know that Rk is optimal when K = k.
Since we know that MIA is optimal under Assumption 2, it is enough to show that Equation A.1
guarantees that the marginal benefit of adding program r̃ = R \ Rk to ROL Rk leads to the
highest marginal improvement. This, combined with the fact that Rk is optimal for K = k,
implies that R is optimal when K = k + 1, and therefore Equation A.2 holds for K = k + 1.

Let R ∈ Rk+1 be a ROL satisfying Equation A.1 for K = k + 1. Without loss of generality
we assume that |R| = k + 1, i.e. uj > u0 and pj > 0 for all j ∈ R, and thus we write
R = {R(1), . . . , R(k + 1)}.29 Let Rk be the subset of R that maximizes the expected utility
given K = k, i.e.

U(Rk) = max
R′⊂R,|R′|≤k

U(R′).

Let r̃ = R \ Rk be the program left out, and R̄ = {j ∈M \R : pj > 0, uj > u0} the set of
programs that are not in R and that would lead to a weak improvement of the expected utility
if added to a ROL. Since R satisfies Equation A.1, we know that

zrk+1
≥ zj , ∀j ∈ R̄, (A.3)

and since r̃ is not in Rk we also know that

zRk(k) ≥ zj , ∀j ∈ R̄ (A.4)

29The case where |R| < K is straightforward and thus we omit it.
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The first step of the proof is to show that

U(R) ≥ U(R′), ∀R′ ∈ S(R)⇒ U(Rk) ≥ U(R′′), ∀R′′ ∈ S(Rk)

To find a contradiction suppose that this is not the case, i.e. U(R) ≥ U(R′), ∀R′ ∈ S(R) but
∃R′′ ∈ S(Rk) such that U(Rk) < U(R′′). By optimality of Rk among all the subsets of R, it must
be the case that r = R′′ \Rk ∈ R̄. Equation A.4 implies that r cannot be the last preference of
R′′ (otherwise we would have U(R′′) < U(Rk)). Hence, R′′(k) = Rk(k) and therefore we have
ur > uRk(k). Combining this with Equation A.4 we have pRk(k) > pr. Then, by Lemma 1 we
know that

U(R′′) > U(Rk)⇒ U(R′′ ∪ {r̃}) > U(Rk ∪ {r̃}) = U(R)

but since R′′ ∪ {r̃} ∈ S(R) this contradicts the assumption given by Equation A.1 for ROL R
with K = k + 1.

Now we know that Rk satisfies Equation A.1 with K = k, so by inductive hypothesis we know
that Rk is optimal among the ROLs of length at most K = k. It remains to show that adding
r̃ to Rk leads to the maximum marginal benefit. Nevertheless, this is direct from Equation A.1
applied to R, since U(R) = U(Rk ∪ {r̃}) ≥ U(R′), ∀R′ ∈ S(R) implies that

MB(Rk, r̃) = U(Rk ∪ {r̃})− U(Rk) > U(Rk ∪ {j})− U(Rk) = MB(Rk, j), ∀j ∈ R̄.

We then know that Rk satisfies Equation A.2 for K = k and that adding r̃ to Rk leads to
the maximum marginal improvement. Since MIA is optimal in our setting, we conclude that
R = Rk ∪ r̃ must be optimal for K = k + 1, concluding our proof.

Lemma 1. Let R ∈ R and R′ ∈ S(R) such that U(R) ≥ U(R′). Then, for any r ∈M \R ∪R′,

U(R ∪ {r}) ≥ U(R′ ∪ {r}).

Proof. Let j1, j2 the indexes of the first and last preference where R and R′ are different, i.e.
j1 < j2 and R(k) = R′(k) ∀k ∈ [1, j1) ∪ (j2, |R|]. Without loss of generality we assume that
R(j1 /∈ R′) and thus R′(j1) = R(j1 + 1), i.e. the first difference between R and R′ is a program
in R but not in R′.30 Now suppose that program r is such that

uR(l−1) ≥ ur ≥ uR(l),

i.e. upon entering ROL R, program r would take the n-th position in the new ROL, i.e. R∪{r} =
(R(1), . . . , R(l − 1), r, R(l), . . . , R(k)). We want to show that

U(R) ≥ U(R′)⇒ U(R ∪ {r}) ≥ U(R′ ∪ {r}).

We consider three particular cases:

Case 1: Suppose n < j1. Then R(l) = R′(l), ∀l = 1, . . . , n, and therefore31

U(R ∪ {r})− U(R′ ∪ {r}) = (1− pr) ·

(
n−1∏
l=1

(1− pR(l))

)
·
[
U(R(n, k))− U(R′(n, k))

]
≥ 0

30The proof for the converse case where the first difference between R and R′ is a program in R′ but not in R
is analogous.

31U(R(l, k)) is the utility derived from the subset of ROL R starting in preference l up to the k-th preference.
Then,

U(R(l, k)) = zR(l) + (1− pR(l))zR(l+1) + . . . +

k−1∏
l=n

(1− pR(l)) · zR(k).
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where the inequality follows from U(R)− U(R′) ≥ 0.

Case 2: Suppose n > j2. We know that

U(R)− U(R′) = U(R(1, j1 − 1)) +

(
j1−1∏
l=1

(1− pR(l))

)
·
[
zR(j1) + (1− pR(j1)) · U(R(j1 + 1, j2 − 1))

]
+ (1− pR(j1)) ·

(
j1−1∏
l=1

(1− pR(l))

)
·

 j2−1∏
l=j1+1

(1− pR(l))

 · U(R(j2 + 1, k))

− U(R(1, j1 − 1))−

(
j1−1∏
l=1

(1− pR(l))

)
· U(R(j1 + 1, j2 − 1))

− zR(j2) ·

(
j1−1∏
l=1

(1− pR(l))

)
·

 j2−1∏
l=j1+1

(1− pR(l))


− (1− pR(j2)) ·

(
j1−1∏
l=1

(1− pR(l))

)
·

 j2−1∏
l=j1+1

(1− pR(l))

U(R(j2 + 1, k))

=

(
j1−1∏
l=1

(1− pR(l))

)
·
[
zR(j1) − pR(j1) · U(R(j1 + 1, j2 − 1))

]
+

(
j1−1∏
l=1

(1− pR(l))

)
·

 j2−1∏
l=j1+1

(1− pR(l))

 · [(pR(j2) − pR(j1))U(R(j2 + 1, k))− zR(j2)

]
≥ 0

Similarly, after some algebra we obtain that

U(R ∪ {r})− U(R′ ∪ {r}) =

(
j1−1∏
l=1

(1− pR(l))

)
·
[
zR(j1) − pR(j1) · U(R(j1 + 1, j2 − 1))

]
+

(
j1−1∏
l=1

(1− pR(l))

)
·

 j2−1∏
l=j1+1

(1− pR(l))

 · [(pR(j2) − pR(j1))U(R(j2 + 1, k) ∪ {r})− zR(j2)

]
To show that U(R ∪ {r})− U(R′ ∪ {r}) ≥ 0 it is therefore enough to show that

(pR(j2) − pR(j1))U(R(j2 + 1, k) ∪ {r})− zR(j2) ≥ (pR(j2) − pR(j1))U(R(j2 + 1, k))− zR(j2)

which is equivalent to show that

U(R(j2 + 1, k) ∪ {r}) ≥ U(R(j2 + 1, k)).

Since we assume that r enters ROL R in the n-th position, this is equivalent to show that

zr + (1− pr) · U(R(n, k)) ≥ U(R(n, k))

which is direct from the fact that ur ≥ uR(n) ≥ . . . ≥ uR(k) and pr > 0. Thus, we conclude
that U(R ∪ {r})− U(R′ ∪ {r}) ≥ 0.
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Case 3: Suppose n ∈ [j1, j2]. Doing some algebra we know that

U(R)− U(R′) = zR(j1) + (1− pR(j1)) · U(R(j1 + 1, j2 − 1))

+ (1− pR(j1)) ·

 j2−1∏
l=j1+1

(1− pR(l))

 · U(R(j2 + 1, k))

− U(R(j1 + 1, j2 − 1))−

 j2−1∏
l=j1+1

(1− pR(l))

 · zR(j2)

− (1− pR(j2)) ·

 j2−1∏
l=j1+1

(1− pR(l))

 · U(R(j2 + 1, k))

= zR(j1) − pR(j1) · U(R(j1 + 1, j2 − 1))

+

 j2−1∏
l=j1+1

(1− pR(l))

 · ((pR(j2) − pR(j1))U(R(j2 + 1, k)− zR(j2))
)

≥ 0

Similarly, doing similar algebra we find that

U(R ∪ {r})− U(R′ ∪ {r}) = zR(j1) − pR(j1) · U(R(j1 + 1, j2 − 1))+

+

 j2−1∏
l=j1+1

(1− pR(l))

 · ((pR(j2) − pR(j1))U(R(j2 + 1, k)− zR(j2))
)

We notice that if

zR(j1)−pR(j1)·

U(R(j1 + 1, n− 1))−

 n−1∏
l=j1+1

(1− pR(l))

 · zr
 ≥ (1−pr)·

[
zR(j1) − pR(j1) · [U(R(j1 + 1, n− 1))]

]
(A.5)

then
U(R ∪ {r})− U(R′ ∪ {r}) ≥ (1− pr) ·

(
U(R)− U(R′)

)
and since U(R) − U(R′) ≥ 0 this would imply that U(R ∪ {r}) ≥ U(R′ ∪ {r}). It is easy
to see that this is indeed the case. In fact, since pr > 0 and pR(l) < 1 for l = 1, . . . , n,
Equation A.5 is equivalent to show that

zR(j1) − pR(j1) · U(R(j1 + 1, n− 1))− pR(j1) · ur ·
n−1∏

l=j1+1

(1− pR(l)) ≥ 0

which in turn is equivalent to show that

zR(j1) − pR(j1) · U(R(j1 + 1, n− 1) ∪ {r}) ≥ 0.

Then,

zR(j1) − pR(j1) · U(R(j1 + 1, n− 1) ∪ {r}) = pR(j1) · uR(j1) − pR(j1) · U(R(j1 + 1, n− 1) ∪ {r})
= pR(j1) ·

[
uR(j1) − U(R(j1 + 1, n− 1) ∪ {r})

]
and since uR(j1) ≥ uR(j1+1) ≥ . . . ≥ uR(n−1) ≥ ur, we conclude that uR(j1) ≥ U(R(j1 +
1, n− 1) ∪ {r}), so we conclude that Equation A.5 holds, concluding the proof.
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B Multivariate Gibbs Sampler

Consider the following specification for students’ preferences:

uij = Zijβ − dij + εij , (B.1)

where Zij = [zij1, ..., zijK ] is a 1 × K row vector of covariates. The system can be stacked in
order to represent the vector of utilities ui as:

ui = Ziβ − di + εi (B.2)

where Zi is an M ×K matrix of covariates, di an M × 1 vector of distances and εi is an M × 1
vector of shocks. Consider also the following independent priors for β and Σ:

β ∼ N(β̄, A−1) (B.3)

Σ ∼ IW (ν0, V0) (B.4)

Step 0 Start with initial values Σ0 and u0 = {u0
i }Ni=0 such that u0

i ∈ C(Ri) ∀i = 1, ..N , i.e, select
u0
i to be a solution to the following problem:

Aiui ≥ ε (B.5)

with ε a small positive number.

Step 1 Draw β1|u0,Σ0 from a N(β̃, V ), where

V =
(
Z∗
′
Z∗ +A

)−1
, β̃ = V

(
Z∗
′
u∗ +Aβ̄

)
(B.6)

Z∗ =

Z
∗
1

...

Z∗N

 (B.7)

Z∗
′
i = C ′Zi, u∗i = C ′u0

i (B.8)

(
Σ0
)−1

= C ′C (B.9)

Where C comes from the Cholesky decomposition of
(
Σ0
)−1
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Step 2 Draw Σ1|u0, β1 from an IW (ν0 +N,V0 + S)

S =
N∑
i=1

εiε
′
i (B.10)

εi = u0
i − Ziβ1 +Di (B.11)

Step 3 Iterate over students and schools, drawing u1
i |β1,Σ1, Ri. For each school j = 1, ..M , draw:

u1
ij |{u1

ik}
j−1
k=1, {u

0
ik}Jk=j+1, β

1,Σ1 (B.12)

from a truncated normal TN(µij , σ
2
ij , aij , bij), where

µij =
K∑
k=1

β1
jkzijk − dij (B.13)

σ2
ij = Σ1

jj − Σ1
j(−j)

[
Σ1

(−j)(−j)

]−1
Σ1

(−j)j (B.14)

The truncation points aij and bij must ensure the draw u1
ij lies in the interior of C(Ri)

given the previous draws, so they are the solutions to the following optimization problems:

aij = max
uij

uij

st. Au ≥ 0

uik = u1
ik ∀k = 1, ..j − 1

uik = u0
ik ∀k = j + 1, ..M

bij = min
uij

uij

st. Au ≥ 0

uik = u1
ik ∀k = 1, ..j − 1

uik = u0
ik ∀k = j + 1, ..M

We implement all of these linear problems using Gurobi.

Step 4 Set Σ0 = Σ1 and u0 = u1 and repeat steps 1-3 to obtain a sequence (βk,Σk).

C Random Coefficients Gibbs Sampler

C.1 Model

Consider the following specification for students’ preferences:
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uij = αim(j) + Zijβ + εij (C.1)

where εij ∼ N
(
0, σ2

)
, Zij = [zij1, ..., zijK ] is a 1 × K row vector of covariates and αim(j) are

major random coefficients. The system can be stacked in order to represent the vector of utilities
ui as:

ui = Imαi + Ziβ + εi (C.2)

where Zi is an M ×K matrix of covariates, εi is a M ×1 vector of shocks, αi is an |B|×1 vector
of major random coefficients such that

αi ≡

 αi1
...
αi|B|

 , (C.3)

and Im is a M × |B| matrix such that for each row r and column c we have that

Im[r, c] =

{
1 if c = m(r)

0 o.w
(C.4)

We model the random coefficients as a multivariate regression on a set of demographic variables
zi:

αi = ∆zi + νi ∼ iid N(0, Vα), i = 1, ..., N (C.5)

where ∆ is a |B|×dmatrix of coefficients, zi is a d×1 vector of student’s observable characteristics
and νi is a |B| × 1 student’s specific shock.

C.2 Priors

Consider the following priors:

β ∼ N(β̄, A−1) (C.6)

Vα ∼ IW (νbo, Vbo) (C.7)

δ = vec(∆) ∼ N(d̄, (Vα ⊗A−1
d )) (C.8)
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C.3 Sampler

Step 0 Start with initial values for α0 = {α0
i }Ni=0, ∆0, V 0

α and initial values for u0 = {u0
i }Ni=0 such

that u0
i ∈ C(Ri) ∀i = 1, ..N , i.e, select u0

i to be a solution to the following problem:

Aiui ≥ ε (C.9)

with ε a small positive number.

Step 1 Draw β1|α0, u0, σ2 from a N(β̃, V ), where

V =
(
Z∗
′
Z∗ +A

)−1
, β̃ = V

(
Z∗
′
u∗ +Aβ̄

)
(C.10)

Z∗ =

Z
∗
1

...

Z∗N

 (C.11)

Z∗
′
i = C ′Zi, u∗i = C ′ (ui − Imαi) (C.12)

(
σ2I
)−1

= C ′C (C.13)

Where C comes from the Cholesky decomposition of the inverse of the variance covariance
matrix of εi.

Step 2 Draw α1
i |β1, u0

i , zi,∆
0, V 0

α , σ
2 from

αi ∼ N
(
b̄,
(
I∗
′
mI
∗
m + V −1

α

)−1
)

(C.14)

where

b̄ =
(
I∗
′
mI
∗
m + V −1

α

)−1 [
I∗
′
mI
∗
mα̂i + V −1

α ᾱi

]
(C.15)

ᾱi = ∆zi (C.16)

α̂i =
(
I∗
′
mI
∗
m

)−1
I∗
′
mũi (C.17)

I∗m = C ′Im (C.18)

ũi = C ′ (ui − Zβ) (C.19)
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Step 3 Iterate over students and schools, drawing u1
i |β1, σ2, α1, Ri. For each school j = 1, ..M ,

draw:

u1
ij |{u1

ik}
j−1
k=1, {u

0
ik}Jk=j+1, β

1, α1
i , σ

2 (C.20)

from a truncated normal TN(µij , σ
2
ij , aij , bij), where

µij =
K∑
k=1

βjkzijk + αim(j) (C.21)

σ2
ij = σ2 (C.22)

For simplicity we omit index i, as this problem must be solved for each student indepen-
dently, then the truncation points can be computed by

aj = max
k∈{k:Akj>0}

−A−jk u−j

Akj

bj = min
k∈{k:Akj<0}

−A−jk u−j

Akj

where A−jk is matrix A−j ’s k-th row and Akj is the k-th element of column Aj .

Step 4 Draw ∆1|α1, ∆̄, Ad, V
0
α from

δ = vec(∆) ∼ N
(
d̃, V −1

α ⊗
(
Z ′αZα +Ad

)−1
)

(C.23)

d̃ = vec(D̃), D̃ =
(
Z ′αZα +Ad

)−1
(
Z ′αZαD̂ +AdD̄

)
(C.24)

D̂ =
(
Z ′αZα

)−1
Z ′αG (C.25)

G is an N × |B| matrix with each α′i as a row

Zα is an N × d matrix with each z′i s a row

D̄ = stack(d̄) is a d×B matrix formed column by column from the elements of d̄.

Step 5 Draw V 1
α |α1,∆1, νob, Vob from

Vα ∼ IW (νbo +N,Vbo + S) (C.26)

where

S =
∑
i

(αi − ᾱi) (αi − ᾱi)′ , ᾱi = ∆zi (C.27)

Step 6 Set u0 = u1, α0 = α1, ∆0 = ∆1, V 0
α = V 1

α and repeat steps 1-5 to obtain a sequence βk,
αk, ∆k and V k

α .
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