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We study the relevance of incorporating dynamic incentives and eliciting pri-
vate information about students’ preferences to improve their welfare and down-
stream outcomes in centralized assignment mechanisms. Using administrative
data and two nationwide surveys, we identify two behavioral channels that largely
explain students’ dynamic decisions: (i) initial mismatches and (ii) learning. Based
on these facts, we build and estimate a structural model of students’ college pro-
gression in the presence of a centralized admission system, allowing students to
learn about their match quality over time and reapply to the system. We use the
estimated model to analyze the impact of changing the assignment mechanism
and reapplication rules on the efficiency of the system. Our counterfactual results
show that policies that provide score bonuses that elicit information on students’
cardinal preferences and leverage dynamic incentives can significantly decrease
switching and increase students’ overall welfare.
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1. INTRODUCTION

According to Kapor et al. (2020a), at least 46 countries use a centralized system to orga-
nize their admissions to college, including Turkey, Taiwan, Tunisia, Hungary, and Chile.
Although extensive literature analyzes the pros and cons of different mechanisms used
to perform the allocation, their effects on policy-relevant downstream outcomes (be-
yond the initial assignment) is unclear. For instance, policymakers often care about stu-
dents’ retention, which is especially low; only 40% of full-time bachelor’s students grad-
uate on time (OECD 2019). This low yield can be particularly severe for developing coun-
tries such as Chile, where 30% of students switch, close to 30% drop out, and the overall
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on-time graduation rate is 16% (the lowest of all countries in the OECD).! As this exam-
ple illustrates, important downstream outcomes should be taken into account when al-
locating these resources, and centralized assignment mechanisms may help to improve
them.

To understand the effects of centralized mechanisms on outcomes, it is essential
to account for features that characterize real-life applications and that are mostly over-
looked in the literature. One such feature is that matching markets are typically dynamic.
For instance, students can learn over time about their match quality with programs,
reapply, and switch from their initial assignment if they are assigned to a more pre-
ferred program; and they can also drop out at any point in their college progression.?
Another feature is that students may have private information that is not elicited in
the admissions process and could affect their future outcomes and the higher educa-
tion system’s efficiency. For instance, students’ intrinsic motivation or vocation, which
would be captured by their cardinal (or the intensity of their) preferences, could affect
their persistence in their programs, and thus impact the system’s efficiency. Therefore,
designing admissions systems that consider the dynamic nature of incentives and elicit
information about students’ cardinal preferences can be critical for improving students’
outcomes and the efficiency of the system.

In this paper, we study how to design matching markets in which agents have dy-
namic considerations, learn about their match quality through experience, and have
private information that may affect their outcomes. Moreover, we evaluate how changes
in assignment mechanisms can impact students’ welfare and downstream outcomes,
including their college grades, on-time graduation rates, and retention. We accomplish
this by incorporating dynamic incentives and eliciting information on students’ cardinal
preferences.

By combining administrative data from the Chilean college admissions system and
two nationwide surveys we designed and conducted, we show that two behavioral chan-
nels largely explain students’ dynamic decisions. The first channel, called the learning
channel, posits that students learn about their match quality during their college expe-
rience, which potentially changes their consumption value and future returns, and thus
motivates them to switch or drop out to avoid ex post mismatches. The second channel,
called the initial mismatch channel, posits that students may enroll in less preferred
programs to improve their outside option and later participate again in the admissions
process to switch to a more preferred option.

Note that these two channels may have different implications. On the one hand, if
learning is limited and thus preferences are persistent over time, it may be desirable to
restrict reapplications and force students to internalize the crowd-out externality they
generate.> On the other hand, if learning explains most students’ dynamic decisions, it

ISimilar concerns arise in school choice, whereby policymakers often care about achieving social mobil-
ity, meritocracy, and equal access to opportunities (Tanaka et al., 2020).

2In school choice, many systems—including that in NYC (Abdulkadiroglu et al., 2005a) and (Narita,
2018); Boston (Abdulkadiroglu et al., 2005b); and Chile (Correa et al., 2021)—have multiple rounds, and
students/families can either accept their assignment or reject it and reapply to the system in the next round.

3A similar crowd-out externality occurs when students repeatedly take admissions exams (Krishna et al.,
2018).
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may improve welfare to facilitate switchings and avoid ex post mismatches. Hence, the
welfare implications of limiting or encouraging switchings are unclear. *

To evaluate the effects of these two channels, we introduce a structural model that
captures the application behavior of students, as well as their decisions to enroll, re-
take the admission tests, reapply, switch, and drop out, allowing students to learn about
their unobserved abilities—i.e., match quality—during their academic progression. In
particular, we assume that students base their application and enrollment decisions on
both (i) the value of studying each program and the continuation value of retaking the
admission tests and reapplying to the system and (ii) their labor market prospects. As
they progress in college, students observe noisy signals of their unobserved ability from
their grades, and they use this information to update their continuation values for each
program. Based on this, students decide whether to continue in their current program,
reapply to the system, or drop out and choose their outside option. Finally, students face
graduation probabilities, and then enter the labor force and receive pecuniary and non
pecuniary values from the labor market.

The main challenge in estimating our model is to separately identifying the learn-
ing and mismatch channels. To identify the former, we leverage correlation patterns be-
tween students’ college grades and their decisions to reapply, switch, or drop out. On
the other hand, to identify the latter, we combine two sources of variation: (1) students’
beliefs about their admissions probabilities and (2) the persistence of students’ pref-
erences and the relation between students’ preferred assignment and their outcomes.
Specifically, by leveraging the discontinuities generated by admissions cutoffs, we show
that there is a positive causal effect of not being assigned to the top-reported prefer-
ence on the probabilities of reapplying (65% increase) and of switching (58% increase),
which supports the existence of the mismatch channel. Overall, our results suggest that
learning explains close to half of switching decisions, while mismatches and congestion
explain the remaining switches and part of the dropout decisions.

After estimating the structural model, we assess whether changes in the assign-
ment process—either through changes in the reapplication rules or in the assign-
ment mechanism—can affect students’ outcomes. We find that penalizing students who
switch, as is the case in Turkey; giving a score bonus for all first-year applicants, as is the
case in Finland; or allowing students to signal one of their preferences to get a bonus
in that specific program, in the spirit of the signaling mechanism in the Economics
job market, can significantly reduce switching rates, and at the same time increase stu-
dents’ ex post welfare. We also find that these effects are robust to changes in the frac-
tion of participants who behave strategically, as opposed to other approaches such as
constraining the length of application lists.®

4In Appendix A we present a stylized model and show how a clearinghouse can improve students’ out-
comes by eliciting cardinal information about their preferences. Moreover, Proposition 1 in Appendix A
illustrates how both behavioral channels might affect students’ switching behavior and welfare in equilib-
rium.

50ur results motivated the Ministry of Education of Chile to relax the constraints on the length of appli-
cation lists for the 2023 admissions process.
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Our counterfactual experiments stress the importance of correctly balancing the ef-
fects of the two behavioral channels: allowing students to learn through experimenta-
tion and reducing the crowd-out externality caused by initial mismatches. Overall, our
results show that incorporating dynamic incentives and eliciting students’ cardinal pref-
erences through changes in the reapplications rules and the assignment mechanisms
can significantly affect students’ outcomes and their overall welfare. These insights can
be informative to improving the design of many matching markets that exhibit similar
features. For instance, in organ transplant systems, one of the primary goals is to maxi-
mize patient survival (Agarwal et al., 2021). Patients have private information regarding
their health, face dynamic considerations such as when to accept or reject an organ, and
even learn about organs’ qualities over time (Zhang, 2010). In entry-level labor markets,
employers may care about turnover, and agents may have private information about
their preferences, learn about their match qualities through experience, and face dy-
namic considerations such as deciding when to enter the labor market, exit, re-enter,
and rematch with employers. Our key insight is that market designers should correctly
balance the gains from learning through experimentation and the crowd-out externality
produced by initial mismatches to improve the efficiency and equity of these markets.

The paper is organized as follows. Section 2 discusses the most closely related litera-
ture. Section 3 describes the Chilean college admissions system and provides empirical
evidence for the two behavioral channels. Section 4 presents our model, and Section 5
describes our identification strategy. Section 6 describes the estimation approach and
its results. Section 7 reports our counterfactual results, and Section 8 concludes.

2. LITERATURE

Our paper combines two strands of the literature: (i) the empirical analysis of assign-
ment mechanisms and (ii) the empirical analysis of college choices under uncertainty.

The first strand focuses on (i) understanding the incentives that centralized assign-
ment mechanisms introduce, (ii) how to use the data generated by these mechanisms
to identify and estimate students’ preferences/beliefs, and (iii) measuring the welfare
effects of changing assignment mechanisms in different settings. Depending on the
available data and the incentives students face, researchers have developed various
methodologies to identify and estimate students’ beliefs and preferences (see Agarwal
and Somaini (2019) for a survey). Prior evidence of the effects of changing the assign-
ment mechanism and application rules on students’ welfare has yielded mixed results.
Researchers have found that mechanisms that elicit the intensity of students’ prefer-
ences can achieve higher ex ante welfare (Agarwal and Somaini (2018), Calsamiglia et al.
(2020), He (2012), among others), but this heavily depends on assumption about stu-
dents’ sophistication (Kapor et al., 2020b), which suggests that the appropriate mecha-
nism depends on the specific setting.

Despite progress in understanding the role of assignment mechanisms and their im-
pact on agents’ welfare, the aforementioned studies either consider static settings, as-
sume that preferences do not vary over time, or simply ignore the potential effects of
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assignment mechanisms on downstream outcomes. ® Taking a dynamic approach can
yield new insights into the classical trade-off between strategy-proof mechanisms (such
as DA) and mechanisms that elicit the intensity of students’ preferences (such as IA).
For instance, when students have repeated interactions with the assignment mecha-
nism, ignoring the system’s dynamics can lead to biased estimates of the welfare effects
of changing the assighment mechanism. The reason is that in static settings, researchers
assume that students’ indirect utilities are invariant to the counterfactuals. However, if
students can have repeated interactions with the assignment mechanism, continuation
values might be affected by changes in the mechanism. Moreover, static approaches do
not allow researchers to evaluate alternative policies that could enhance welfare, such
as modifying reapplication rules, as is the case in Finland and Turkey. Finally, it is crucial
to understand the implications of changing assignment mechanisms on students’ out-
comes, such as students’ achievement, persistence, and graduation rates, while allowing
for learning and dynamic considerations.

To our knowledge, the only exception to this is Narita (2018), who analyzes theo-
retically and empirically the welfare performance of dynamic centralized school-choice
mechanisms when demand evolves over time. Although the dynamics and learning pro-
cesses are related, our paper differs substantially, since there are essential differences
between school-choice and college admissions systems that affect both the research
questions and the identification strategies. In our setting, “switching” costs naturally
arise because students incur an opportunity cost when they switch programs and delay
graduation. These switching costs are not present in school-choice systems and pro-
duce a crowd-out externality that affects the system’s efficiency and equity. Given these
differences, we focus the impact of changing the assignment mechanism by eliciting
preference intensity and modifying reapplication rules on students’ welfare and their
college outcomes.

The second strand of the literature studies individual education and occupation
choices, stressing the role of human capital specificity, uncertainty about match qual-
ities, and how students’ choices impact their educational outcomes and labor market
returns (see Altonji et al. (2012) and Altonji et al. (2016) for reviews). Almost all papers
in this literature focus on decentralized college markets or ignore any rationing mech-
anism that could play an ROLe in college admissions (an exception is Bordon and Fu
(2015)). We use insights from the seminal work by Arcidiacono (2005) and more re-
cent work by Arcidiacono et al. (2016) to model students’ learning process and their
labor-market outcomes, and augment their methodology by micro-founding the col-
lege/major choice process in the presence of a centralized admission system, taking into
account students’ strategic behavior.

Within this strand of the literature, the closest paper to ours is Bordon and Fu (2015),
who analyze the effects of changing the Chilean university system from one in which
students choose a college and major at the same time to one in which they choose a

6Two recent exceptions are (i) Tanaka et al. (2020), who use a quasi-experimental approach to evaluate
the long-run effects of repeated school admission reforms in Japan, and (ii) Agarwal et al. (2021), who struc-
turally evaluate the effect of changing the assignment mechanism of deceased donor kidneys on down-
stream outcomes.
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college first and then a major. * Our paper’s main difference is that we model the entire
application and switching behavior of students and use information from their reported
Ranked Ordered List (ROL) over time, grade records, and survey responses to separately
identify the persistence of students’ preferences from learning. These differences allow
us to rely less on the model’s particular structure to identify the model primitives. How-
ever, we do not consider peer effects in the analysis, and we do not have access to a panel
of students’ future wages. Our counterfactual experiments also differ in nature. Instead
of changing the university system’s structure and affecting the learning channel, we fo-
cus on changes to the assignment mechanism and reapplication rules—which affect the
mismatching channel—and evaluate the effects of these changes on different outcomes,
such as switching and graduation rates.

Our work is complementary to these two strands of the literature, since we provide
new insights into the effects of centralized assignment mechanisms from a dynamic per-
spective. To the best of our knowledge, ours is the first paper that structurally measures
the effects of centralized assignment mechanisms and reapplication rules on students’
welfare and college outcomes beyond their initial assignment, including achievement,
college retention, and on-time graduation rates. Finally, we also contribute to the liter-
ature by revisiting the trade-off between eliciting the intensity of students’ preferences
and guaranteeing strategy-proofness, but we do so in a dynamic context that allows for
private information about students’ preferences and learning about match qualities.

3. COLLEGE ADMISSIONS IN CHILE

The college admissions process in Chile is semicentralized, with the most selective uni-
versities having a centralized system and the remaining institutions conducting their
admissions processes independently. This paper’s empirical application follows the co-
hort of 2014 and focuses on the centralized part of the system, known as Sistema Unico
de Admision (SUA). This part of the system is organized by the Consejo de Rectores de las
Universidades Chilenas (CRUCH), and its admissions process is operated by the Depar-
tamento de Evaluacién, Medicién y Registro Educacional (DEMRE).

To apply to any of the close to 1,500 academic programs offered by the 41 universities
that are part of the centralized system, students must undergo a series of standardized
tests (Prueba de Seleccién Universitaria or PSU). These tests include Math, Language,
and a choice between Science or History, and provides a score for each. Students’ per-
formance during high school yields two additional scores: one obtained from the aver-
age grade during high school (NEM) and a second that depends on the relative position
of the student among his/her cohort (Rank). A distinctive feature of the system is that
admission to any program is solely based on these admission factors.

After scores are published, students can submit a list with no more than ten pro-
grams, ranked in strict order of preference. We refer to these lists as Rank Order Lists

“Malamud (2011) also analyzes the trade-offs students face when they specialize early in their college
education. The author argues that if the rate of field switching in systems with an early specialization is
high, this can be seen as evidence that education provides valuable information on match quality and that
match quality has a large impact on education returns.
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(ROLs). Notice that students directly apply to a program, i.e., they must list university-
major pairs on their ROL. In the remainder of the paper, we refer to these pairs as pro-
grams. Also, it is important to note that there is no monetary cost for submitting an
application.

On the other side of the market, each program announces its vacancies, the weights
on each admission factor, and the set of additional requirements they will consider
for applications to be valid. For instance, universities may require a minimum appli-
cation score or a minimum score in some of the PSU tests, among other less common
requirements.? Each program’s preference list is defined by first filtering all applicants
who do not meet these requirements. Students are then ordered based on their applica-
tion scores, which are computed as the weighted sum of the applicants’ scores and the
weights predefined by each program.

Considering the vacancies and the preferences of the applicants and programs,
DEMRE runs an assignment algorithm to match students to programs. The mechanism
used is a variant of the student-proposing Deferred Acceptance algorithm, in which all
students tied for the last seat in a program must be admitted. A thorough description of
the mechanism can be found in Rios et al. (2021). As a result of the assignment process,
each program is associated with a cutoff, such that all students whose weighted score is
above it are granted admission, and all students with scores below the cutoff are wait-
listed and thus may have to enroll in a lower-ranked preference. This property is known
as the cutoff structure.

The enrollment process starts right after assignment results are published, and con-
sists of two rounds. In the first round, only assigned students can enroll in their pref-
erence of assignment; in the second round, programs with seats left after the first stage
can call students on their waitlists and offer them the chance to enroll. Also, at any point,
applicants can apply and potentially enroll in a program outside the centralized admis-
sions system, and they also have the option to join the labor force directly. Moreover,
students can participate in the admission process as many times as they want, and they
can use the scores obtained in the previous year as part of their application.?

3.1 Data

Our dataset includes (i) administrative data provided by DEMRE and the Ministry of
Education (MINEDUC), (ii) two surveys designed and conducted in collaboration with
CRUCH and DEMRE aiming to elicit students’ preferences and beliefs about admissions
probabilities, and (iii) grade records facilitated by CRUCH. Specifically:

¢ Admissions process: This includes students’ socioeconomic characteristics (includ-
ing self-reported family income, parents’ education, and the municipality in which

8For instance, limiting the position of a program on a student’s ROL or the total number of programs
listed from a given university. Some programs, such as music, arts, and acting, may require additional apti-
tude tests.

9To compute the application score, each program uses the weighted average score based on the pool
of scores for the current year and the pool of scores for the previous year (if any). The maximum between
these two scores is considered as part of the application.
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the student lives, among others); scores; applications; final assignment and en-
rollment decisions, spanning from 2007 to 2020. In addition, this includes data
on programs and universities characteristics, including their number of vacancies,
weights, tuition, duration, major, and program’s location, etc.

* Labor Market: This includes aggregate information about the labor market prospects
of each program, spanning from 2014 to 2018. More specifically, we have estimates
for average wages (four years after graduation) at the program level and the overall
employment probability one year after graduation. We also have data at the ma-
jor level, including average wage for the first to the fifth year after graduation; five
points in the distribution of average wages for the first year and fifth year after grad-
uation (10th, 25th, 50th, 75th, and 90th), employment probabilities for the first and
second year after graduation; and the evolution of average wages from the first to
the tenth year after graduation.

* Grades: This includes the cumulative GPA for their first three years of college for
every student who enrolls in a program that is part of the centralized system in 2014
and 2015. To our knowledge, this is the first paper to use these data.

e Surveys: This includes the results of surveys that we designed and conducted in 2019
and 2020 to gather information on students’ preferences for programs and their be-
liefs about admissions probabilities. These surveys were sent to all students who
participated in the PSU tests (more than 150,000 each year) at the end of the ap-
plication process. We asked students about their top-true preference and their be-
liefs about their admissions probabilities for each program on their ROL and also
for their top-true preference (if not in ROL), among other questions. Moreover, as
many students reapply to the centralized system after a year, we have information
about students’ preferences and their beliefs for a small panel of reapplicants who
participated in the survey. To our best knowledge, this is the first time that data on
beliefs about admission probabilities and college persistence has been collected for
a centralized college admissions system.

Throughout the paper, we focus on a subset of the population to reduce computa-
tional complexity. Specifically, we focus on students who graduated from a high school
within the Metropolitan region in 2013, participated in the 2014 admissions process (i.e.,
took the PSU tests), and had an average score between Math and Language above 475.1°

3.2 Empirical Facts

As discussed in Section 1, we posit that students’ dynamic decisions are largely ex-
plained by two behavioral channels: (i) mismatching, whereby students assigned to less

10This reduces the number of programs to less than half (435) without major loss, as close to 80% of
applications from students living in the Metropolitan region include only programs located in that region.
Hence, we treat the Metropolitan region as a market. Finally, we exclude students with average score below
475 (less than 13% of students who can apply) because they do not satisfy loan eligibility requirements.
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preferred programs reapply to improve their allocation, and (ii) learning, whereby stu-
dents learn about their match qualities (abilities and preferences) over time and poten-
tially decide to move to other programs. In this section, we provide empirical evidence
that supports the existence of these two channels.

One of the main challenges in disentangling these two behavioral channels is that
we do not have cardinal information regarding students’ preferences, since we only ob-
serve their characteristics and ROLs. Moreover, students’ reports may not be truthful;
some students tend to skip programs for which their admission chances are relatively
low (Larroucau and Rios, 2018). Despite this, we claim that reported ROLs still shed light
on the intensity of students’ preferences. For instance, we know that listing a program
in a higher position on the ROL implies a higher preference intensity than programs
listed in lower positions (Haeringer and Klijn, 2009). Moreover, not listing a program for
which the probability of admission is high enough implies that the ROL programs are
preferred (see Larroucau and Rios (2018) for a detailed discussion). Finally, apart from
the information we can extract from students’ ROLs, adding dynamics can help identify
preferences’ intensity. For example, students who decide to reapply must have higher
intensity in their preferences than students who remain in their program (conditional
on observable characteristics and in the absence of learning). Similar information can
be inferred from switching and dropout decisions.

3.2.1 Mismatching In Table 1, we report the average switching and dropout rates in
the first four years, separating by income level—high or low—and gender.!! First, we
observe that close to 23.5% of students switch from the first program they enrolled in,
and 23.9% drop out within the first four years. Second, comparing program switching
and dropout rates by gender (within an income level), we observe that women are more
persistent in their academic progression, since their switching and dropout rates are
lower than those for men. On the other hand, comparing these rates by income level
(within gender), we observe that low-income students are less likely to switch programs
during their academic progression. However, we also observe that low-income students
are significantly more likely to drop out.!? One potential explanation is that low-income
students have less flexibility to switch programs and delay graduation due to budget
constraints and, at the same time, face a more difficult time in college due to their dis-
advantageous background, which increases their chances of dropping out. These results
suggest that there are significant differences in switching and dropout rates by gender
and income, and are similar to those obtained if we focus on switching and dropouts
within the first year. Hence, throughout the rest of the paper we focus on the latter for
simplicity. This choice is without major loss of generality, since close to 80% of switching
takes place in the first two years, and close to 2/3 of these occurs within the first year (see
Figure B.4 in Appendix B.3).

e refer to majors as the fields of education provided by the International Standard Classification of
Education (ISCED) (UNESCO (2012)) and adapted for Chile. The modified version of the ISCED fields used
in Chile classifies programs into Farming, Art and Architecture, Science, Social Sciences, Law, Humanities,
Education, Technology, Health, Management, and Commerce.

12while credit constraints likely play an important role in the drop-out decisions of some students, the
large majority of attrition of students from low-income families should be primarily attributed to reasons
other than credit constraints (Stinebrickner and Stinebrickner, 2008).
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TABLE 1. Switching and Dropout by Gender and Income

Switches

Income Program University Major Mathtype Dropout

Men Low 0.235 0.117 0.107 0.044 0.239
(0.008) (0.006) (0.006) (0.004) (0.008)

High 0.258 0.137 0.141 0.051 0.155

(0.006) (0.004) (0.004) (0.003) (0.005)

Women Low 0.182 0.090 0.096 0.046 0.202
(0.008) (0.006) (0.006) (0.004) (0.008)

High 0.226 0.115 0.133 0.068 0.106

(0.006) (0.004) (0.004) (0.003) (0.004)

Overall 0.232 0.120 0.126 0.055 0.158
(0.003) (0.002) (0.003) (0.002) (0.003)

Note: Standard errors reported in parenthesis.

FIGURE 1. Switchings and dropout

]

Percentage
o
g
s
—
—
—
—
—
—_—
—_
—
—_—

0.05 I I I

0.00 T . v v -
1 2 3 4 Below 4
Preference of assignment

Dropout Major switching University switching Program switching

Note: Switching categories do not include stop out.

To assess whether the preference of assignment impacts student outcomes, Figure 1
shows switching and dropout rates (at the end of the first year) conditional on students’
preference of assignment. We observe that students assigned to lower reported prefer-
ences switch at higher rates compared with students assigned to their top reported pref-
erence. Among students assigned to their top reported preference, 9.86% switch pro-
grams at the end of their first year, compared with almost 15% of those assigned to their
fourth choice. In contrast, we observe no effect of the preference of assignment in first-
year dropout rates. These results suggest a strong correlation between the preference of
assignment and switching rates. One potential explanation is that there are observable
differences between students assigned to lower and higher preferences. For instance,
students with low scores are systematically assigned to lower preferences, which gen-
erates a positive correlation between assignment preference and switching rates. Simi-
larly, programs listed in lower preferences are more likely to be of lower quality, which
incentivizes students to try to switch.

To make a causal claim, we use a regression discontinuity design that exploits the
algorithm’s cutoff structure to perform the allocation. If we assume that students around
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FIGURE 2. Effect of Cutoff Crossing
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the cutoff are similar and only differ in their right to enroll in a higher preference, we can
estimate the causal effect of interest.'® In Figure 2, we display binned means of different
outcomes as a function of the distance between cutoffs and students’ scores in their
most preferred listed program.'# Figure 2a shows that students right below the cutoff are
close to 8.7% more likely to reapply the following year, which corresponds to a relative
change of close to 62.1%. Figure 2b shows that students below the cutoff are close to
5.8% more likely to switch programs within the centralized system, which corresponds
to a relative change of more than 57.9%.!° These results confirm our previous findings,
i.e., that students assigned to lower preferences are more likely to reapply and switch
programs the following year.

The previous empirical facts show a causal effect of the preference of assignment
on students’ persistence in their initial assignment. To show that the mismatch chan-
nel partially explains this, we use the 2020 survey on students’ preferences and beliefs,
in which we find that a significant fraction of students know, before enrolling in their
assigned programs, that they will be less likely to remain in that program if they are as-
signed to a lower reported preference (see the details in Appendix B.3.1). These results
cannot solely be explained by students’ or programs’ characteristics.

3.2.2 Learning Students’ preferences may change during their first year in college,
which could affect their decision to reapply. We analyze students’ reapplication at the
end of their first year and classify switching into three categories: (i) Up, (ii) Down, and
(iii) Out. Students move Up (Down) if they switch to a program listed above (below) their
initial enrollment on their initial ROL. Students move Out if they switch to a program not
listed on their initial ROL.

13A detailed discussion of this analysis and its potential selection issues is provided in Appendix B.2.

14In Appendix B.2.1 we report the results of a similar analysis that considers students’ top true prefer-
ences. The results are relatively the same.

15The average fraction of students who reapply is 14.0% and 22.6% for students above and below the
cutoff, respectively. The average probability of switching is 10.0% and 15.8% for students above and below
the cutoff, respectively.
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We find that, among students who switch in their first year, 18.1% move Down, 14.8%
move Up, and 67.1% move Out. Moreover, more than half of the latter switches in-
volve more selective programs, i.e., programs with higher admission cutoffs compared
with their initial enrollment. These results suggest that both channels explain students’
switching significantly. Students who move Down or Out to less selective programs are
likely to have learned about their (poor) match quality (learning channel), and students’
who move Up or Out to more selective programs may be trying to find a better match.

To rule out forced switching, i.e., students who switch because they were expelled
due to poor performance, in Table 2 we analyze the effect of first-year grades on reap-
plication and switching decisions. In all of these models, we control for demographics
(gender, income); scores (NEM and the average between Language and Math); and the
preference of assignment in the initial year. Columns (1), (3), and (5) include the entire
sample, and columns (2), (4), and (6) focus on students with a GPA greater than or equal
to 4.0. Since 4.0 is the pass/fail threshold (the scale is from 1.0 to 7.0), by focusing on
students with a GPA above 4.0 we rule out the explanation that all students who switch
were forced to leave their initial program.

TABLE 2. Effect of Grades on Qutcomes

Reapply SUA Switch Program  Switch Down or Feasible ~ Switch Up
0 2 (3) 4) (5) (6) (@]
GPA —0.905 —-0.404 -—1.232 —-0.300 —1.283 —0.624 0.099
(0.031)  (0.075)  (0.037)  (0.075)  (0.040) (0.097) (0.123)
GPA >4 No Yes No Yes No Yes No
Observations 13,414 11,120 12,584 10,846 12,584 10,846 12,584

Note: We use data on grades from the cohort that graduated from high school in 2014 and enrolled in 2015 in the program
they were assigned to in the centralized system. GPA is measured on a scale of 1 to 7, and failing grades are below 4.0.

We observe that GPA is negatively correlated with the decision to reapply, switch,
and in particular switch to a lower preferred program or to a program that was not in
the original ROL but was feasible (i.e., admission probability above 0). The latter is con-
firmed by Figure 3a. In addition, we observe that switches up are not correlated with
grades, as shown Figure 3b. Finally, we obtain similar results when we restrict the anal-
ysis to students with a GPA above the passing grade. These results suggest that students
may learn from their (low) grades and may decide to switch to programs they preferred
less, according to their initial ROL.

Our previous results show that students’ reported preferences may change during
their first year in college. To analyze changes in true preferences, we use the surveys
conducted in 2019 and 2020. Specifically, we construct a panel of students that consists
of those who participated in both surveys and responded to the same questions (close
to 1,300 students), and we compare the top true preference reported in each year. In Fig-
ure 4, we plot the fraction of students who changed their top true preference (for pro-
grams and also for universities) as a function of their initial preference of assignment (in
2019). First, we observe that on average, close to 65% of the students in the data changed
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FIGURE 3. Effect of Grades on Switchings by Type
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FIGURE 4. Percentage of reapplicants that change their top-true preference, by preference of
assignment in 2019
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their top true preference after their first year in college. Moreover, close to 50% of stu-
dents even changed their most preferred university. Second, we observe that students
initially assigned to lower preferences are less likely to change their top true preference
for programs. This result is consistent with the existence of the mismatch and learning
channels, since students initially assigned to their top-reported preference have a lower
probability of being mismatched, and thus their reapplication suggests that they learned
about their match quality during their first year in college.

4, MODEL

This section describes our model of students’ applications, enrollment, and dropout
decisions, including learning about their match quality over time. The goal is to have
a model that encompasses the empirical evidence described in the previous sections,
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which allows us to measure how much of students’ switching behavior is explained by
learning over time vs. initial mismatch, and assess whether students’ outcomes can be
affected by changing the mechanism and reapplication rules.

Throughout the model, we assume that students learn about their match-qualities
with programs and that this information might affect their future returns upon grad-
uation. In this sense, we label unknown match-qualities as unknown abilities to give
them a productive meaning. Abilities are assumed to be multidimensional and par-
tially known by students. In particular, students receive signals of their unknown abil-
ities through their college GPA and, based on this information, they update their beliefs.
Given their updated beliefs, students choose to (i) continue in their enrolled program,
(ii) reapply to the centralized system, expecting to switch programs, or (iii) drop out
from the centralized system. Finally, we model labor market returns as a function of the
students’ major, abilities and observable characteristics, and path through college.'®

4.1 Model overview

For estimation purposes, we consider a three-period model. Periods 1 and 2 correspond
to the first and second years of college after graduation from high school. Period 3 starts
at the beginning of the third year of college and collapses the later years until gradua-
tion from college, with the discounted payoffs received in the labor market. Every period
involves several decisions and stages. In period 1, students who graduated from high
school make their application decisions, receive their enrollment, choose whether to re-
take the PSU, obtain their college grades at the end of the first year, and update their be-
liefs about their unknown abilities. In period 2, students make reapplication decisions,
and depending on their assignment and enrollment status, choose between remain-
ing in their current enrollment, switching to their new assigned program, or dropping
out. In period 3, students face dropout and graduation probabilities (estimated from the
data) and enter the labor market. We describe each of these stages in detail in Appendix
C.1.

4.2 Labor market

For the labor market stage of the model, we follow Arcidiacono (2004) and Arcidiacono
(2005). The labor market is an absorbing state, and utility while in the workforce is given
by the present value of lifetime earnings and non pecuniary utility. We further assume
that utility is separable over time. In particular, we assume the following specification:

T—t
Z /BTP#;ij’L'jT‘| ) ’

Vijt =0y (afmj + aimj) +ay Aij +af Ay, + af A 4 ay log (Ew
=0

non pecuniary -
pecuniary

1)
where the first four terms capture the non pecuniary payoff that individuals perceive
from working in a job associated with program j. We allow these payoffs to vary with the

161n Appendix C we describe models for enrollment, dropout, and graduation.
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student’s observed ability in program j, A;;; the average observed ability in college k;,
[lkj; and unknown ability A};. We also include student ’s random coefficient for major
mj, dim;, and fine major fixed effects vy, ; .17 By incorporating random coefficients, we
introduce persistence over time on students’ unobserved preferences, which can affect
both their flow utility and their utility in the work force.!® The fifth term captures the
pecuniary payoff students receive in the work force, with w; ;- representing the earnings
for student ¢ with tenure 7, graduating from program j. In addition, 7 is the retirement
date (which varies by gender), ¢ corresponds to the year (period) in which the student
graduates from college and enters the work force, 5 is a common discount factor, and
Py, .+ is the employment probability in major m; for an individual with tenure 7. Notice
that student ¢ receives this continuation value only if she graduates from her program. If,
instead, student ; drops out in period ¢, we assume that she receives a continuation value
given by V;o; that depends only on her observable characteristics X;. This is formalized
in Assumption 1.

ASSUMPTION 1. If student i graduates from program j in period t, she obtains a contin-
uation value equal to V;%,. In contrast, student i receives a continuation value equal to
Viot =V (Xi0,t) if she drops out from her program in period t, where X ;o includes gender
and family income.

We specify the wage students receive conditional on graduation as a function of their
tenure, major m;j, observable characteristics Z;" (gender), expected grades upon grad-
uation G,;, and college quality, proxied by the average ability of their classmates flkj 19
More specifically, we assume that the log earnings for student i with tenure 7, graduating
from program j in period ¢, can be written as

log(wijr) = Am; + X2 Ak, +X3Gij (Aij, Afj) + MZP + Ajr + €ijr, 2)

where Amjr = Asm; T+ A6m, 72 specifies how wages in major mj depend on tenure 7.

4.3 Academic Progression

During their academic progression, students receive their flow utility from attending
college and observe their grades, which provides them with a signal of their unknown
abilities and expected grades upon graduation. As discussed in the previous section,
students take into account their ability when computing their pecuniary and non pe-
cuniary labor market returns, and thus the information obtained from their grades is
highly valuable. Students may use this information to decide whether to reapply in the
next period, continue to be enrolled in the same program, or drop out of college.

17We model programs’ fixed effects, o fe;» as the sum of college fixed effect, a;, plus a fine major fixed
effect, oy, ; (“area carrera genérica"). Fine majors can take up to 108 categories in our sample. For instance,
Medicine and Nursing are two different fine majors from the Health major.

181n Section 4.3.1 we describe how we model the random coefficients.

19We choose to structurally model wages to allow them to change in the counterfactuals. An alternative
approach could be to fix wages and incorporate them as observable characteristics in the value function.
More details about ability are reported in Section 4.3.2.
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4.3.1 Flow Utility Let u;;; be the flow utility that student ¢ receives for attending pro-
gram j at time ¢,

u
Uijt = Qfe; + Qim; + iy + Zizoe— Clije + €4t

where o fe; is a program fixed effect; Qi and g, are student ¢’s random coefficients
for major and university type, respectively; and Z;« captures the effect of student and
program characteristics that are time invariant,

(Aij — Aj)

ZZujOé:Oinj +Oé2Aj +O¢3Di]’ + a4 5,
where D;; is the distance between student i’s and program j’s municipalities; A4;; is stu-
dent i’s observed ability in program j; A; is the average observed ability for students
assigned to program j in the previous calendar year (the program’s selectivity);?? and
aj is its standard deviation. Finally, C;;; captures the monetary cost for student i to en-
roll in program j at time ¢ and is given by C;;; = aco (Cjt — éij), where c;; is program j’s
yearly tuition plus enrollment fees and ¢;; captures the sum of all government-provided
scholarships for student i in program j5.?!

We follow Larroucau and Rios (2018) and model the random coefficients as a multi-
variate regression on a set of students’ observable characteristics. In particular,

Qi = AT ZT X = AR ZE 4 X

where A™ and A are matrices of coefficients to be estimated; x* ~ N (0, V™) and x" ~
N(0,V7™) are vectors of idiosyncratic shocks with mean zero and variance-covariance
matrices V" = 2™ and V} = 02F1, respectively; and Z" and ZF are matrices of ob-
servable characteristics, where the former includes students’ gender, and the latter in-
cludes students’ family income type.?? Finally, ¢;;; is an idiosyncratic preference shock
that is distributed i.i.d type I extreme value with a scale parameter of one. We specify a
location normalization and set the systematic value of the outside option (not enrolling
in a program within the centralized system) to be u;9; = 0.

4.3.2 Learning As described in Equation 2, students’ labor market returns depend on
their grades, which in turn depend on their abilities. We assume that these abilities have

20We choose to not model endogenuous peer effects because we lack variation in peer composition over
time within programs (see Bordon and Fu (2015) and Allende (2019)). However, this channel is less relevant
to our counterfactuals, because we aim to swap students around admission cutoffs, without significantly
changing the composition of students within programs.

21A large literature analyzes the role of credit constraints in shaping schooling choices (see Lochner and
Monge-Naranjo (2012) and Lochner and Monge-Naranjo (2016) for an overview). In our context, previous
evidence shows a large effect of loan eligibility on initial college enrollment (Solis, 2017). However, recent
evidence suggests that students whose average score exceeds loan eligibility requirements (equal to 475
points) do not seem to be highly sensitive to different prices regarding their college re-enrollment or com-
pletion rates (Card and Solis, 2020). Following this evidence, we focus on this sample of students and avoid
modeling the potential effects of credit constraints on students’ dynamic choices.

22We classify students as low income if their self-reported family income is below the median of the
family income distribution and as high income otherwise.
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two components, one that is directly observable and known by students (and the econo-
metrician), and another that is unknown and learned from the grades obtained during
college. More specifically, we assume that students have beliefs about their abilities and
they update them as they observe their grades according to Bayes’ rule. To formalize
these ideas, we start by modeling students’ abilities, then model the grade equation,
and finish this section by modeling beliefs and the updating process.

4.3.2.1 Ability. Each student i has an observed subject-specific ability vector A4; =
(Ajs,,, Ais, ); an unobserved (to the student and the econometrician) subject-specific
ability vector A} = (A}, ,AY, ); and a major-specific ability A¥ = for each major m;.
Each component of these ability vectors captures the student’s known and unknown
math and verbal abilities, indexed by s,, and s,, respectively. We assume that student
i’'s (un)observed ability in program j is given by the weighted sum of her (un)observed

abilities, i.e.,

A= Y wirdi, and AL =AL + D wipAl, (3)
k€{sm,suv} k€{sm,sv}

where wj;, is the admissions weight of factor £ in program j. Even though subject-
specific components do not vary across programs, there is still variation in students
weighted abilities due to the heterogeneity of programs’ specific weights, w. In this
sense, although major-specific ability is non-transferable across different majors, subject-
specific components are imperfectly transferable, which allows for correlated learning
across programs from different majors.

4.3.2.2 Grades. As described above, we assume that students observe their grades at
the end of each of the first two periods and, based on these signals, update their beliefs
about their unknown abilities. Moreover, we assume that grades depend on the major
(m) of the program in which the student is enrolled, on the known (4;;) and unknown
abilities (4;;), and on a set of observable characteristics (Z7).% Also, to capture the fact
that students’ initial preferences may affect their performance, we include student i’s
random coefficients for major, o, ;, and university type, o;;;. We assume that the grade
equation for the first and second periods is given by

Gijt =Vim; + 7245 + 732 +VaQim; + ysaik, + Ajj + E?jtv (4)

where agﬁ is white noise distributed N (0, 03). Therefore, upon receiving her grades, the
student can compute a signal of her abilities, a;;¢, given by

aijt = Gije — (Wlmj + 72445 + V327 +yactim, + 750%1@) .

4.3.2.3 Beliefs and Updating. We assume that students are rational and update their
beliefs using the signals about their unknown abilities that come with their grades, ac-
cording to Bayes’ rule. In particular, we assume that students’ initial prior about their
unobserved major-specific ability is normally distributed with mean zero and variance

23The estimation results described in Section 6 only include gender.
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o2, for all students and majors. Similarly, we assume that students’ prior about their un-
observed subject-specific abilities is also normally distributed with mean zero and vari-
ance o2 for all students and subjects. Thus, unobserved abilities are centered around
observed abilities. We formalize this in Assumption 2.

ASSUMPTION 2. Students’ initial priors on their unobserved major and subject-specific
abilities are normally distributed with means zero and variances o2, and o2, respectively.
These priors are common to all students.

A direct consequence of this assumption is that the posterior distribution of the over-
all unknown ability in Equation 3 will also follow a normal distribution. Let i+ (A};) and
ot(Aj;) be the prior mean and standard deviation of Aj; at the beginning of period ¢.
When it is clear from the context, we will remove the argument and simply write them
as 155+ and o; ¢, respectively. Hence, Assumption 2 implies that

2 2 2 2
,uijl:()y and 01]1:Jm+ Z w]kas
k6{8m75v}

In Proposition 3, we show how to compute the posterior mean and variance of the over-
all unobserved ability after observing a signal a;;;. We defer the proof to Appendix C.2.

PROPOSITION 3. Suppose that student i is enrolled in program j in period t = 1 and that
she observes a signal a;j;. Then, she will update her mean unobserved ability in each pro-
gram j' according to

—1
2 2 2 .
(Uijt + Ug) ' |:Zl€{sm,s,u} Wj/le‘lO's a’ijtjl lfmj’ # m;

Pijrt+1 = Et (A%/|aijt) = -

2 2 S S 2, iFrn ) — 7

(Uz‘jt + ag) . {Zle{sm,sv} WjnW;10saijt + O’mamt} ifmj =m;
Intuitively, students will learn more about programs similar to the ones they are cur-
rently enrolled in, especially for programs that belong to the same major and that place
similar weights on admissions scores. It is crucial to notice that, according to our model,
only those students who are enrolled in a program observe a signal of their abilities.

Hence, we assume that students who are not enrolled do not update their prior.?*

4.3.3 Application Once students get their scores—either the first time they take the ex-
ams or after retaking them—they must decide which programs to include on their ROL.
We assume that students’ application behavior can be classified as one of two types: (i)
weak truth-tellers, and (ii) strategic. These types are exogenously given, with students
being weak truth-tellers with probability p and strategic with probability 1 — p. We as-
sume that weak truth-tellers report their true preferences as long as they exceed the
outside option, while strategic students submit an ROL that maximizes their expected
value. Following Chade and Smith (2006), we assume that this process can be modeled

24We make this assumption because we do not have data on students’ grades outside the centralized
system.
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as an optimal portfolio problem, which can be solved using the Marginal Improvement
Algorithm (MIA) (see Appendix C.4). Each student : who applies in period ¢ considers a
vector of indirect utilities {vi]-t}j M and a vector of beliefs about admission probabili-

ties {pij }j < 1 @nd the submitted ROL R;; satisfies

k—1
Ryt € argmax =z +(1—pg oy L= prrn) - 2 s — (R,
" ReR|RI<K r() (A =Pr)) 2R1(2) l:l_ll( R(1)) " ZR/(K) — ¢(R)

where zp 1) = Pr(k) - Vr(k): T€presents the expected utility (over the assignment) ob-
tained from the k-th preference in the ROL and ¢(R) is the cost of submitting the ROL R,
which in our case is equal to zero.

This model relies on the assumption that students neglect potential correlations
across cutoff distributions. Also, to simplify the analysis, we further assume that stu-
dents do not include programs in their ROL unless it is strictly profitable, as discussed
in Larroucau and Rios (2018). This assumption implies that strategic students will not
add programs for which their admission probability is zero. Finally, we assume that
students have rational expectations regarding their admission probabilities.?> These as-
sumptions are formalized in Assumption 4.

ASSUMPTION 4. Students take the distributions over cutoffs to be independent across pro-
grams. In addition, students have rational expectations regarding their admission proba-
bilities, and they include programs in their portfolio only if it is strictly profitable.

Discussion: The parameter p should not be interpreted as a primitive of the model,
since we expect it to vary with the counterfactuals. The reason is that in the baseline, it
could be payoff equivalent to report an ROL as a weak truth-teller or strategically. How-
ever, if we change the assignment mechanism or the reapplication rules, acting as a weak
truth-teller may lead to a payoff-relevant strategic mistake. As we do not model the latter,
in our counterfactual analysis we consider two scenarios: (i) all students behave strate-
gically?® and (ii) a fraction (1 — p) behaves strategically, where p is a lower bound on the
level of sophistication.

5. IDENTIFICATION

In this section we describe our identification strategy and how we use the data described
in Section 3.1 to this end.

Labor Market. As discussed in Section 3.1, we only have information about wages ag-
gregated at the program and major levels. We identify wage equation parameters (\) by
exploiting variation across programs on students’ average wages and their correlation

25This is a common assumption in the literature (Agarwal and Somaini, 2018, Larroucau and Rios, 2018).
Larroucau et al. (2021) analyze in detail students’ subjective beliefs. Although subjective beliefs are biased,
beliefs are centered around rational expectation beliefs.

26This would hold if information policies that give precise information about admission probabilities to
students were implemented.
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with students’ and programs’ characteristics.>’Non pecuniary labor market parameters
(a") are identified by the correlation between student observable characteristics, their
reported preferences, and graduation probabilities. As we do not have information on
wages for students who dropped out of college, we model the value functions of drop-
ping out as a function of students’ observable characteristics. Intuitively, these value
functions’ parameters are identified by the share of students who dropped out condi-
tional on their observable characteristics, including gender and income level.

Flow utility. The identification challenge of separately identifying the parameters that
govern unobserved preferences from those related to the learning process is that both
channels affect students’ choices over time and are unobserved by the econometrician.
However, due to the rational expectations assumption and the assumption on common
prior beliefs about students’ unknown abilities, students’ initial application decisions
are informative of their unobserved preferences, because students have not received any
signal about their unknown abilities when they submit their initial applications. Hence,
we can identify the flow utility parameters using students’ initial choices and the corre-
lation between students’ characteristics and the characteristics of the programs they list
and enroll in. In particular, to identify the major and university-type specific parame-
ters (i.e., the parameters that govern the distributions of Qim s Aik; in4.3.1), we leverage
the heterogeneity in terms of major and college types within students’ ROLs.?® Then, we
use these values as moments to be matched in the estimation procedure. To identify the
cost parameter, «.o, we follow the strategy proposed by Kapor et al. (2020a) and exploit
a discontinuous change in tuition generated by the scholarship Beca Vocacion de Pro-
fesor.?9 Finally, as is standard practice, we normalize the logit shocks’ scale to one, the
mean utility of the outside option to zero, and further consider a discount factor 5 equal
to 0.9.

Grades and Learning. According to Equation 4, grades are functions of observed char-
acteristics, students’ unobserved preferences for majors/colleges, students’ unknown
abilities, and the signal’s noise. To identify the effect of unobserved preferences, we use
the correlation between grades and students’ preferences and their assignment, and we
also use the correlation between students’ application composition—the share of dif-
ferent majors and share of different college types—and grades. Intuitively, if students’
unobserved preferences for majors positively affect their college grades, we would ex-
pect that students whose ROLs imply a high preference for a particular major—i.e., hav-
ing a high share of programs that belong to the same major—should also have higher
first-year grades than other students. On the other hand, to separate the impact of stu-
dents’ learning about their unknown abilities from the grade noise, we compare the law

27We fix wage growth parameters to the rates computed using SIES data.

28For each student, we compute the fraction of preferences belonging to each major and university type
and then compute the average across students for each major and college type.

29Under this scholarship, students with an average score higher than 600 points can enroll an Education
program without paying yearly tuition. This change in tuition generates a discontinuity in enrollment in
education programs around this cutoff (see Figure D.1 in Appendix D.1), which we exploit for identification
(see Kapor et al. (2020a) and Gallegos et al. (2019) for more details on the effect of this scholarship on
students’ enrollment).


https://www.econometricsociety.org/

Submitted to Unknown Journal Dynamic College Admissions 21

of motion between students’ first-year grades and second-year grades for switchers and
non-switchers (Arcidiacono et al., 2016), and the correlation between students’ first-year
grades and the change in students’ ROL composition for majors and college types. For-
mally, consider the following equation that defines student i’s posterior unknown ability
for program j:

(wsj/WSj +(1- wsj/)(l - wS,;‘)) O-?aijt + l{mj/:mj}o'znaijt

Hijre4+1 =

03 +02, + (w?i +(1- wsj)Q) o2 ’
where w; i and ws, are the weights that programs j and ;' use for math; a;;; is the sig-
nal that student i receives from her grades in program j at time ¢; and 02,, 02, and 03
are the variances of the major unknown ability, subject unknown ability, and the grade
noise, which are the parameters of interest we want to identify. On the left-hand side
of the equation, 41,11 is the unknown ability of student 7 in program ;' at time ¢ + 1.
The posterior unknown ability affects students’ switching and dropout decisions and
their reapplications. Intuitively, if students’ grades have a very low correlation with their
outcomes, most of the signal is noise (high 03). On the other hand, if there is a high
(negative) correlation between students’ first-year grades (signals) and their switching
and reapplication choices—particularly for changing majors or math types—the signal
is highly informative about the unknown abilities for major (high 02,) and subjects (high
02), respectively.30 31

Application. We separately identify students’ beliefs about admissions probabilities
from their preferences by assuming rational expectations and exploiting distance as a
special regressor (Agarwal and Somaini, 2018). To estimate the probability that students
are either truth-tellers or strategic (see Section 4.3.3), we use the results of the survey on
students’ true preferences and the ROLs submitted to construct moments that allow us
to identify this parameter. In particular, we use the share of students’ applications for
which their top-reported choice has zero admission probability. Finally, we add addi-
tional identifying information from students who reapply to college.We use the panel of
repeated respondents on the 2019 and 2020 surveys and compute the share of reappli-
cants who report a different top-true preference for programs, majors, and college types.
Since we have direct information on top-true preferences, the variation in students’ re-
sponses gives us an additional information source that helps us identify students’ learn-
ing.3?

30The value of the signal is also affected by the effect of grades on wages (\3) and by the effect of the
unknown ability on the non pecuniary work utility (cf’). These parameters directly affect switching and
dropout probabilities but do not affect the signal’s scale in the grade equation of the first period.

31The underlying identification assumption is that students’ past signals (which are a function of their
grades) are a sufficient statistic about how their unknown abilities affect their choices.

32We do not have grade information for these cohorts. Thus we can not construct correlations between
students’ true preferences for programs and their college grades.


https://www.econometricsociety.org/

22 Submitted to Unknown Journal

Counterfactual outcomes. To identify the distribution of outcomes in the counterfac-
tual, we leverage the variations given over initial assignments by the RDDs shown in Sec-
tion 3.2. Since the first-order effect of our counterfactuals is to swap students around ad-
mission cutoffs, these variations can accurately predict those counterfactual outcomes.
We then use the structure of the model to predict outcomes away from the cutoffs and
to account for potential equilibrium effects that may change students’ application and
their initial assignment. Intuitively, these variations help us identify how strong is the
initial mismatching channel and relate it to the parameters that govern unobserved per-
sistent heterogeneity and first-time enrollment cost. In Section 6.1 we discuss how we
include these variations as moments in the estimation procedure.

6. ESTIMATION

To perform the estimation, we draw a random sample of 4,000 students from the pop-
ulation described in Section 3.1. Moreover, we group majors into four broad majors—
Science (Science, Farming, and Technology); Social Sciences (Social Sciences, Art and
Architecture, and Law); Education and Humanities (Education and Humanities); and
Health (Health)—to reduce the number of parameters to be estimated, and we consider
three types of college: CRUCH-Public, CRUCH-Private and Non-CRUCH. Finally, to fur-
ther facilitate the estimation, we classify programs into two types depending on their
admission weights: (i) math intensive, which includes programs for which the weight
on math is higher than that on verbal; and (ii) verbal intensive in the converse case.
In a slight abuse of notation, we denote by s; the type of program j, and we say that
5j = Sm(sy) if program j is math (verbal) intensive. Then, instead of considering the
weights of each program, we use the average math weight among all programs that be-
long to the same type. As a result, the unknown ability of student i in program j becomes
Al = A;‘mj +ws; Aj (1 —ws;) A, , where &y is the average weight on math for pro-

grams of type s; € {5y, 50}

6.1 Estimation Procedure

We estimate the model parameters, 6, via Indirect Inference (II). The idea behind II is
to choose a statistical model that yields a rich description of the data patterns (Bruins
et al. (2018)), which allows us to identify the model parameters. This statistical model—
also known as the auxiliary model—is estimated on both the data and on simulated
data from the structural model. The II estimator minimizes an objective function that
compares the distance between the estimated data parameters and the parameters es-
timated from the simulated data. In this sense, the Simulated Method of Moments is
a particular case of II, in which the auxiliary model is just a vector of moments. In On-
line Appendix E, we formally introduce the estimator, describe the estimation algorithm,
and discuss the auxiliary models considered. Table 3 summarizes each set of moment
conditions and their target parameters.

33This is known as the Wald approach to II. Other criterion functions can also be used for estimation.
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TABLE 3. Estimation moments

Moment description Targeted parameters
Share of students who retake the PSU Cpsu

Share of students who dropout by gender and income level {aa}a, a®, C¢, 02
Grade auxiliary models’ coefficients 5, {73

Wage auxiliary models’ coefficients A
Switchings and dropout auxiliary models’ coefficients 02,02, 02, Y
RDD auxiliary models’ coefficients Varm, Vik, C¢
Share of students who reapply

Share of students who switch programs 2,02, Vam, Vi, C¢
Share of students who switch majors 2, Vam

Share of students who switch majors within math-types a2, Vam

Share of students who switch math-types within majors o2

Share of students who switch college-types Vok

Share of students who dropout at the end of the first year of college a®

Share of students who choose the outside option every year av

Share of students who start college in the second year
Share of students who remain in the same program after two years

Share of top-reported preferences by program {afe}j
Share of students whose top-reported preference is their top-true preference in R P
Share of students whose top-reported preference is their top-true preference in Ry P
Share of students whose top-reported preference has zero admission probability p
Share of students with a positive risk of being unassigned given Ry P
Share of ROLs R with length 10 P
Share of ROLs Ry with length 10 P
Share of students assigned to their top-true preference in the first period p

Share of students who apply in the first year
Share of students who apply in the second year

Share of reapplications that change in their top-true preference 02,02, Varn, Vi
Shares of majors within R; Vam
Shares of college-types within Ry Vi
Shares of majors within Ry Vam
Shares of college-types within Ra Vik
Norm of the difference between the vectors of college-type shares for students who reapply Vi
Norm of the difference between the vectors of major shares for students who reapply 2, Vam
Norm of the difference between the vectors of w shares for students who reapply 02, Vam, Vr
Correlation between first-year grades and the norm of the difference between the vectors of major shares for students who reapply o2, zrg
Correlation between first-year grades and the norm of the difference between the vectors of w shares for students who reapply a2, Ug
Share of applications by major and college-type, grouped by gender in R; A™, AR
Share of applications by major and college-type, grouped by gender in R A™, Ak

Share reapplications from top-reported preferences
Share reapplications from top-true preferences

Mean of tuition for top-reported preferences, grouped by students’ scores and income groups {acke
Mean of observed ability for top-reported preferences ai
Mean of average observed ability at the college level for top-reported preferences g
Mean of distance for top-reported preferences as
Mean of relative observed ability position for topreported preferences ay
Mean and variance of log % for positive PSU scores {1}, opsu
Mean and variance of log g’;:" for PSU scores wit zero value in the first year {aoi}1,0psu

6.2 Results

Table 4 shows the estimated parameters. We observe that the estimated share of stu-
dents who apply strategically is 0.74. Thus, a significant fraction of students behave
as weak truth-tellers. We also observe that the correlation and persistence of students’
preferences by major are relatively high (¢2™ = 15.69), considering that the variance of
students’ idiosyncratic preference shocks is normalized to 72 /6. Additionally, we ob-
serve that the prior variances for subject-specific abilities and major-specific abilities
are given by o = 0.48 and o7, = 0.34, and the grade noise variance is given by o2 = 0.08,
which implies a signal-to-noise-ratio of 0.91.34 This implies that the signal carries sig-
nificant information about students’ unknown abilities and their match qualities with

34We compute the signal-to-noise-ratio as the share of the variance that is attributable to latent ability
0'72n+0'§

as opposed to noise, i.e, SNR = TTreT4eT
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TABLE 4. Estimation Results - Parameters

Parameters Values Std

Application behavior and Dropout

Share of strategic ROLs (1 — p) 0.74 [0.022]
Cost of retaking PSU (CPs%) 4.46 [0.219]
Dropout flow-utility for females (o;:’j’:x’) 19 [1.262]
Dropout flow-utility for males (u:::l”:“t) 41.8 [1.756]
Dropout flow-utility for low-income (a;{:l‘",’f’f:fu’,”{,'J 15.8 [0.83]
First-time enrollment cost (C¢) 32.16 [0.944]

Flow-utility and Priors

Tuition (cv) -0.14 [0.049]

Relative position (a4) -0.28 [0.022]

Distance (a3) -1.09 [0.056 ]

Student observed ability (1) 12.92 [0.86]

Program observed ability (a2) 4.65 [0.26]

Gender effect by major (A™) (-4.93-2.463.281.48)  ([0.363][0.171][0.256][0.237])
Variance major random coefficient (zr?{”’) 15.69 [0.913]

Income effect by college (A¥) (-0.11-0.129.06) ([0.215],[0.218],[0.4491])
Variance college random coefficient (02%) 0.43 [0.075]

Major prior variance (afn) 0.34 [0.032]

Subject prior variance (a?) 0.48 [0.103]

Grade equations

Constant by major (yim;) (3.914.323.813.43) ([0.105][0.229][0.14][0.208])
Student observed ability (v2) 0.52 [0.053]

Gender effect (y3) 0.36 [0.052]

Random coefficient effect on grades (major) (v4) 0.05 [0.015]

Grade shock variance (02) 0.08 [0.04]

Evolution of scores

Std. of v (opsu) 0.1 [0.007]

Mean prop. change ({a;};) (1.061.07 1.051.02) ([0.004][0.007][0.006] [0.001])
Mean prop. change from zero score ({c; };) (1.071.08) (10.024110.0217)
Non-pecuniary work utility

Major random coefficient (a}’) 8.72 [0.363]

Student observed ability (') 71.58 [2.688]

College observed ability (o}’ -1.86 [0.592]
Non-pecuniary work value of unknown ability (") 178.57 [6.852]

Pecuniary work utility parameter (o) 75.95 [5.247]

Wage parameters

Constant by major (A1) (1.781.171.071.63)  ([0.073],[0.083],[0.1],[0.059])
College observed ability (\2) 0.03 [0.011]

Grades (\3) 0.13 [0.017]

Gender effects (\4) -0.19 [0.094]

Wage shock variance (02, 0.68 [0.08]

Wage growth

Linear term by major ()\57,11) (0.110.180.140.24) )

Quadratic term by major (Nem,) (0-0.01-0.01-0.02) (-)

Note: The order of majors is Social Sciences, Science, Education and Humanities, and Health. The order of colleges is
CRUCH-Public, CRUCH-Private, and Non-CRUCH. Standard deviations are computed via boostrap. Programs’ fixed effects are
available upon request.

programs. 3° However, the magnitudes of the prior variances should not be interpreted
in isolation, because the signal’s value is affected by the importance of the unknown
ability in the non pecuniary work utility plus the effect of students’ grades on their fu-
ture wages. Thus, we analyze the importance of students’ learning regarding their effects
on outcomes in the counterfactual experiments.

To highlight the most relevant identifying variations, Table 5a shows the correlation
between students’ switching and their grades, which is key for identifying the effects of

35Notice that although students are significantly more likely to switch majors when receiving low grades
than to switch math types, this does not necessarily imply that students’ signals are more informative about
major-specific abilities than subject-specific abilities. The reason is that dropout decisions are also nega-
tively correlated with grades which implies that the signal carries significant information about ability com-
ponents that are imperfectly transferable across different majors compared with non transferable ability
components.
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students’ learning on outcomes. As before, we observe that most of the correlation pat-
terns are well matched: Switching Up is almost uncorrelated with grades, while switch-
ing Out to ex ante feasible programs is negatively correlated. However, we underesti-
mate the correlation between grades and dropouts. Table 5b shows the estimated causal
effects of the RDD models. This variation is critical for identifying the role of initial mis-
matches and correctly predicting switching rates in the counterfactuals. We observe that
we closely match these moments although we tend to over-predict the level of re appli-
cations.36

TABLE 5. Goodness of Fit

(a) Correlation between grades and outcomes (b) Causal effect RDDs
Model Data Model Data
Dropout -0.055 -0.086 RDD switch program 1 (level) 0.205  0.1622
Switching programs -0.152  -0.148 RDD switch program 1 (coeff.)  -0.07  -0.0478
Switching broad majors -0.092  -0.075 RDD reapplications 1 (level) 0.488  0.2261
Switching majors -0.172  -0.107 RDD reapplications 1 (coeff.) -0.104  -0.0840
Switching math type -0.079  -0.044
Switching Up -0.008  0.002
Switching Down -0.029  -0.032
Switching Out feasible -0.084  -0.089

Switching Out unfeasible  -0.032  -0.011
Note: The order of colleges is CRUCH-Public, CRUCH-Private, and Non-CRUCH.

7. COUNTERFACTUALS

We now present our counterfactual analysis. As discussed in Section 1, our counterfactu-
als aim to evaluate whether different policies oriented to elicit cardinal preferences may
help to improve students’ outcomes and the system’s efficiency. To accomplish this, we
implement two families of counterfactuals: (i) modifying the assignment mechanism
and (ii) modifying reapplication rules. We evaluate these policies in terms of different
outcomes, including switching, dropout rates, reapplications, on-time graduation, etc.
Moreover, for these counterfactuals, we add two measures of students’ welfare: ex ante
and ex post. The difference between these two measures is given by evaluating welfare
before and after learning about match quality.3” Both welfare measures are translated
into millions of Chilean pesos per year of enrollment as of 2014.

Before proceeding to our primary counterfactual analysis, we analyze the extent to
which students’ switching and dropout decisions are explained by the two posited be-
havioral channels (see Appendix E1 for details). On the one hand, by eliminating the sys-
tematic learning channel, we find that students’ reapplications, switching, and dropout

36In Appendix E we compare all the moments and coefficients predicted with their data counterparts.
37Ex post utilities are computed at the end of period two, adding the discounted value function of period
three—i.e,, after students have made all of their choices in the model.
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would decrease by 11%, 52%, and 18% from their baseline values, respectively. More-
over, eliminating learning decreases the value of being assigned to the centralized sys-
tem relative to the outside option. On the other hand, if we assign every student to their
top choice—thus eliminating initial mismatches—we would increase students’ reten-
tion and reduce switchings by 74%. These results suggest that eliminating initial mis-
matches is a sensitive approach to reduce switching and increase retention rates, and in
turn improving the system’s yield.

7.1 Assignment Mechanisms

We evaluate the effects of eliciting the intensity of students’ preferences by changing the
assignment mechanism. In particular, we evaluate two mechanisms:

1. Constrained Deferred Acceptance (CDA): Change the constraint in the length of the
ROLs, K. We evaluate K € {1,2, 3}, since most students submit an ROL with length
less than or equal to 3.

2. Choice-Augmented Deferred Acceptance with score bonus (CADA): Students can
signal one program on their submitted ROL, and receive a bonus ¢ in their scores
related to their high school GPA. We implement this mechanism only for first-
period applicants, and therefore students who apply in the second period do not
receive the bonus.®®

Both mechanisms elicit the intensity of students’ preferences, since they introduce
opportunity costs that students must take into account when submitting their applica-
tions. In the case of CDA, constraining the length of applicants’ lists limits students in
including other programs on their ROLs, and thus they must account for the opportu-
nity cost of including each program. In the case of CADA, students can signal only one
program, and thus they must carefully decide which program to target to get the bonus.
However, notice that eliciting the intensity of students’ preferences may not necessarily
lead to higher retention. On the one hand, if eliciting this information decreases initial
mismatches, we would expect to reduce inefficient switching. On the other hand, if the
assignment mechanism also elicits the intensity of preferences of students who reapply
to the system and these change considerably due to learning, we would see an increase
in efficient switching due to a higher value of reapplication. In this sense, we expect that
under CADA—which provides a score bonus only in the first period—switching would
decrease more than in the case in which the score bonus is applied in both periods be-
cause the policy also gives a comparative advantage to first-period applicants, which
increases switching costs through the higher equilibrium cutoff scores produced by the
bonus.

38See Abdulkadiroglu et al. (2015) for details. We choose to implement CADA only in the first period to
avoid solving for the continuation values under this mechanism, which would add a high computational
burden to the model. To implement this mechanism, we need to specify how to find the optimal ROL for
each student, given their preferences and beliefs. Algorithm 3 in Appendix F describes a procedure to ac-
complish this.
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In Table 6 we report the results of these counterfactuals. The first column includes
results of the baseline model. The next three columns report the results of constrained
DA considering values K € {1,2,3} in decreasing order, and the last three columns re-
port the results of CADA with score bonus ¢ € {10%, 20%, 30% }.39 First, we observe that
CDA increases the fraction of reapplicants if K is sufficiently low. This result is intuitive,
since reducing the maximum size of the ROLs increases the risk of being unassigned,
which increases the incentive to reapply the next year. On the other hand, we observe
that limiting the size of the ROL is not very effective for decreasing the overall number
of switches and dropouts. Finally, we observe that ex ante and ex post welfare decrease
when K =1.

On the other hand, we observe that CADA effectively assigns more students to their
top-true preference in the first period, which decreases initial mismatches and students’
switches. Also, we observe that CADA increases the fraction of students who apply in
the first period and increases the fraction of students who remain enrolled in their pro-
grams. As a result, this mechanism leads to higher persistence in programs measured
by the share of students who enrolled in the same program in the second year. Further-
more, we observe that CADA considerably increases students’ ex post welfare compared
with both the baseline and CDA.

Finally, we observe that the overall impact of the bonus relative to the baseline is non
monotonic, since welfare increases when ¢ = 10% and ¢ = 20% but it then decreases
when ¢ = 30%. These results suggest that the gains from learning and having the option
of switching could exceed the negative externality imposed by students who switch and
displace other students who may have stronger preferences for those programs (ex ante
welfare losses). Moreover, these findings confirm that substantially reducing switching
could also be inefficient for the system if we do not account for the gains from learn-
ing. Overall, these results suggest that CADA with a low score bonus could be a sensible
policy to reduce switches and increase students’ welfare.

7.2 Reapplication Rules

Another policy to reduce the incentive to switch is to provide bonuses to students apply-
ing for the first time to the system or to penalize students who reapply and try to switch
programs; these policies have been implemented in Finland and Turkey, respectively. To
our knowledge, neither of these policies has been analyzed in terms of their impact on
students’ outcomes. To analyze this, we consider the following two families of policies:

(i) Turkish reapplication rule: Applicants receive a penalty ¢ in scores related to their
high school GPA if they are currently enrolled in the centralized system.

(ii) Finnish reapplication rule: Applicants receive a bonus ¢ in scores related to their
high school GPA the first time they submit an ROL to the centralized system.

39In Appendix E3, we show supporting evidence that a significant fraction of students would change
their application lists strategically when facing a binding constraint on the length of application lists.
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TABLE 6. Results Counterfactuals - Mechanisms

Constrained DA CADA

Outcome Baseline K=3 K=2 K=1 ¢=10% ¢=20% ¢=30%
Reapplicants [%] 34.27 0.35 1.62 10.01 -11.80 -20.92 -26.32
Program switchings (%] 6.48 -0.40 0.66 20.74 -22.28 -32.84 -39.10
Retakes PSU [%)] 21.62 0.44 3.05 16.34 -23.30 -34.70 -40.48
Dropouts [%] 7.90 -0.19 -1.14 -6.83 2.84 3.73 4.56
Dropouts - first year [%] 3.70 -0.54 -1.48 -11.76 11.61 16.88 20.41
Applicants in first period [%] 62.24 0.06 0.33 1.23 1.04 1.73 2.24
Enrolls same program [%] 31.64 -0.13 -0.98 -12.14 7.20 10.61 12.95
Assigned to top true preference [%)] 10.46 0.76 2.38 -9.59 16.20 22.60 23.84
Unassigned in first period [%)] 44.17 0.33 1.09 9.69 -4.26 -6.30 -7.79
Graduate late [%] 95.04 0.01 0.02 0.41 -0.06 -0.20 -0.18
Difference in Ex Ante Welfare Relative to Baseline (in millions of Chilean pesos)

Overall - 0.03 -0.01 -1.14 0.47 0.60 0.54
Difference in Ex Post Welfare Relative to Baseline (in millions of Chilean pesos)

Overall - 0.01 -0.08 -1.95 0.62 0.77 0.78

Note: Percentage of change relative to the baseline. Switching and dropout rates are computed with respect to the total
sample of participants.

Even though both policies aim to reduce the incentives for switching, they affect stu-
dents’ applications and reapplications in different ways. On the one hand, the Finnish
policy directly reduces the incentives to reapply to the system, regardless of the pro-
grams students include on their ROLs. As a result, the Finnish policy increases the con-
tinuation value of choosing the outside option, and thus increases the fraction of stu-
dents who wait an extra year to submit their first application. On the other hand, the
Turkish policy reduces the incentives to reapply if students where previously enrolled in
a program in the system—i.e., it reduces the incentives to apply to programs if they are
very likely to switch from them in the future (e.g., programs for which students have low
preference intensity). Hence, the Turkish policy may decrease the fraction of students
who enroll in the first period in less preferred programs. Despite these differences, we
expect that both policies would decrease the frequency of reapplications and switches.
In contrast, the welfare effects of these policies is unclear. Students may benefit from
these policies, since both the penalty and the bonus help to address the negative exter-
nality that switchers generate in the system. However, since under these policies stu-
dents face more barriers to switching, the benefits of learning become lower, and thus
students’ welfare may decrease.

In Table 7 we report the results of these counterfactuals. As expected, we observe that
the Turkish policy elicits the intensity of students’ preferences, assigns more students
to their top-true preferences in the first period, and reduces reapplication and switch-
ing rates, and the magnitude of the effect is increasing in the magnitude of the penalty.
Moreover, we observe that dropout rates for the first year slightly increase as we increase
the penalty. A potential explanation for this is that the Turkish policy increases switching
costs. Thus, students who receive low signals about their match qualities with their en-
rolled programs face lower probabilities for switching than the baseline, increasing their
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incentives to drop out instead. Finally, we observe that welfare increases compared with
the baseline as we increase the penalty.

TABLE 7. Results Counterfactuals - Re-Application Rules

Turkish Rules Finnish Rules

Outcome Baseline ¢ =10% ¢¥=20% ¢¥=30% ¢=10% ¢=20% »=30%
Reapplicants [%] 34.27 -16.81 -29.63 -36.41 -23.84 -34.83 -40.10
Program switchings [%] 6.48 -33.16 -51.53 -63.34 -28.67 -40.31 -46.56
Retakes PSU [%] 21.62 -18.18 -27.79 -32.95 -17.23 -24.34 -25.04
Dropouts [%] 7.90 0.50 0.50 0.32 -0.44 -1.52 -1.96
Dropouts - first year [%] 3.70 4.22 5.70 6.92 0.82 -0.53 -2.29
Applicants in first period [%] 62.24 -0.49 -0.72 -0.79 -7.46 -9.18 -10.45
Enrolls same program [%] 31.64 5.90 9.07 11.17 4.39 5.40 5.46
Assigned to top true preference [%] 10.46 13.39 19.80 21.95 19.51 28.26 29.62
Unassigned in first period [%] 44.17 0.27 0.59 0.72 1.26 2.86 4.27
Graduate late [%] 95.04 -0.22 -0.30 -0.38 -0.13 -0.24 -0.23
Difference in Ex Ante Welfare Relative to Baseline (in millions of Chilean pesos)

Overall - 0.52 0.70 0.76 0.48 0.59 0.50
Difference in Ex Post Welfare Relative to Baseline (in millions of Chilean pesos)

Overall - 0.45 0.65 0.68 0.37 0.43 0.29

Note: Percentage of change relative to the baseline. Switching and dropout rates are computed with respect to the total
sample of participants.

On the other hand, we observe that the Finnish policy has a similar effect on stu-
dents’ outcomes, but the magnitude of the effect varies relative to the Turkish policy.
The Finnish policy is better for assigning students to their top-true preference in the
first period, which significantly reduces initial mismatches. In addition, the Finnish pol-
icy increases the fraction of students unassigned in the first period and the fraction of
students who decide to delay their tertiary education entry, even for low values of the
subsidy. An explanation for this is that students who know their preferences but do not
have good enough scores in the first period are better off waiting a year to retake the ex-
ams and improve their application score instead of enrolling in the first year and trying
to switch later. These results suggest that both policies can be effective for increasing the
system’s yield, and thus reducing the congestion externality of initial mismatches. Figure
5a shows a summary of the counterfactual results.*? Overall, these results suggest that
the most desired policy depends on the objective to be addressed. If the goal is to de-
crease switching and improve the system’s yield, the Turkish policy seems to be the best
option. In contrast, if the goal is to increase students’ welfare, then CADA leads to bet-
ter outcomes. In summary, CADA and the two reapplication rules can increase students’
welfare and the system’s yield. However, further constraining the length of application
lists does not seem to be an effective policy for these objectives.

7.3 Sensitivity to Non Strategic Students.

Itisimportant to highlight that the counterfactual analyses described above assume that
all students are strategic—i.e., their beliefs take into account potential changes in the

40For Figures 5a and 5b we compute retention while considering switching and first-year dropouts.
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FIGURE 5. Summary of Counterfactuals
(a) Strategic (b) Mixture
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distribution of cutoffs induced by the different policies.*! This assumption is reasonable
if precise information about admission probabilities is provided to students. However,
many students in practice are not strategic and report their true preferences. For this
reason, we conduct the same analysis, assuming that 26% of students are non strategic—
similar to the estimation results in the baseline model—as a robustness check. Although
we find that the results are directionally the same, the magnitude of the effects changes
significantly. Figure 5b shows a summary of the results. In particular, we observe that the
overall ex post welfare under CDA decreases as we make the constraint on the length of
ROLs more binding. Overall, both reapplication rules and CADA are more robust to deal
with students who may not report their preferences strategically compared to constrain-
ing the length of their lists, which is a common policy used worldwide to elicit intensity
of preferences.

The previous results motivated the Ministry of Education of Chile to relax the con-
straint on the length of application lists for the 2023 admissions process and propose a
policy evaluation for 2024.

8. CONCLUSIONS

In this paper, we analyze the effects of centralized assignment mechanisms on down-
stream outcomes such as students’ decisions to switch or drop out of college. To ac-
complish this, we study the relevance of eliciting information on participants’ cardinal
preferences and incorporating their dynamic incentives in the design of the assignment
process—features that have been mostly overlooked in the literature.

Using data from the Chilean college admissions system and two nationwide sur-
veys that we designed and conducted, we provide empirical evidence that suggests that
two central behavioral channels explain students’ dynamic decisions. The first chan-
nel, called the initial mismatch channel, predicts that students may have incentives

41To accomplish this, we follow an approach similar to that of Kapor et al. (2020b). However, our case
differs from theirs in that (i) we solve for a stationary distribution in the dynamic application problem,
creating a mixture of applicants and reapplicants who participate in the same admission process, and (ii)
students need to form believes over a large set of cutoff distributions. Algorithm 2 in Appendix F describes
the algorithm to estimate students’ equilibrium beliefs over the cutoff distributions.
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to switch programs if they were initially assigned to less desired preferences. The sec-
ond channel, called the learning channel, suggests that students may learn about their
match qualities during their college progression, and thus may decide to switch to
programs in which their match qualities—and their expected outcomes in the labor
market—are higher.

Given these findings, we introduce a structural model that captures students’ deci-
sions during their academic progression, which allows them to learn about their match
quality from their grades. We use the estimated model to evaluate changes in the reappli-
cations rules—by implementing those used in Turkey and Finland—and the assignment
mechanism—by adding further constraints on the length of lists and adding the option
for students to signal one of the programs in their preferences to obtain a score bonus.
Our results show that these reapplication rules and the signaling mechanism are both ef-
fective for increasing college retention rates and, at the same time, increasing students’
welfare. Moreover, these effects are robust to changes in the fraction of participants who
behave strategically, as opposed to other approaches such as constraining the length of
the lists. However, lack of sophistication in students’ ranking strategies undermines the
effectiveness of these policies, which stress the importance of giving students correct
information about their admission probabilities and helping them in choosing optimal
application lists.

Overall, our results show that incorporating dynamic incentives and eliciting infor-
mation on participants’ cardinal preferences can significantly increase students’ wel-
fare and improve downstream outcomes. These insights can be informative for improv-
ing the design of many matching markets that exhibit similar features. For instance, in
entry-level labor markets, employers care about turnover, and agents may have private
information about their preferences, learn about their match qualities through experi-
ence, and face dynamic considerations, such as deciding when to enter the market (ap-
ply), re-enter (reapply), exit (dropout), or rematch (switch). Our key insight is that mar-
ket designers should correctly balance the gains from learning through experimentation
and the crowd-out externality produced by initial mismatches to improve the efficiency
of these markets.
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Online Appendix for Dynamic College Admissions

APPENDIX A: MOTIVATING EXAMPLE

We first analyze whether it is—theoretically—possible to increase aggregate students’
welfare and increase the system’s yield by changing the assignment mechanism and
reapplication rules. Furthermore, we provide intuition on how switching behavior can
be affected by the assighment mechanism in a dynamic setting.

If students face uncertainty over their admission chances, either because of uncer-
tainty about admission cutoffs or their future application scores, switching can endoge-
nously occur over time. Since students do not know their expost choice sets, they could
choose to enroll in a program in the first year and switch in the following year to a more
preferred program if their choice set allows them to. Moreover, if students are uncer-
tain about their match quality with programs, and after enrollment learn about their
preferences/abilities, they could choose to switch programs or drop out to avoid ex-
post mismatches. Regardless of which mechanism dominates, individual switching and
dropouts impose an externality on universities and on other students. Given the sequen-
tial nature of colleges’ academic progression, when a student switches at the end of the
academic year, the resulting vacancy is lost for the next year and, in the absence of a
proper transfer system that allows students to switch at different stages of their college
progression, this vacancy cannot be reallocated to another student.

To illustrate how switches may arise endogenously, consider a centralized college
admissions problem with reapplications and two periods. Let S = {A, B} and C = {1,2}
be the sets of students and colleges, respectively. We incorporate uncertainty on admis-
sions by assuming that colleges post their first-year vacancies after students submit their
applications. For simplicity, we assume that each college offers one seat with probability
1/2 and no seats otherwise in each period. In addition, we assume that the preferences
of colleges are

B=1A, A=9B,

i.e., college 1 prefers student B over A, and college 2 prefers A over B. Finally, we assume
that colleges care about students’ persistence and incur a cost 7 per student who does
not remain enrolled. This cost captures the idea that colleges make investments in their
students and that the vacancy (and corresponding future tuition payments) is lost when
students switch.

On the other side of the market, we assume that students are expected utility max-
imizers, i.e., they submit a preference list that maximizes their expected utility condi-
tional on their preferences and beliefs about admission probabilities. We assume that
the utility of student i in college j is given by

i yiogi
v; =uj + &,
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where ! is known exante and such that u! - u3' > 0 and uf > uf > 0. ¢! is unknown
exante but learned after the first year. We assume that this random component is dis-
tributed according to

[ with probability p
—1  with probability (1 — p)’

for each student i and college j, and we assume that this distribution is commonly
known exante. We make two additional assumptions regarding the component of the
utility that is learned: (i) v}y — I <uk (% — I < uly)—i.e,, if students learn that they do
not have a high match quality with their current college, they prefer to switch to the
other college; and (ii) u% — I = 0 (ul — I = 0)—i.e., students prefer to enroll in their as-
signed colleges over the outside option. Then, each student i chooses the ROL R! that
maximizes their expected utility in each period ¢.

Notice that, depending on the mechanism and the reapplication rules, students may
submit different ROLs, which in turn may affect their assignment and their academic
progression. To illustrate this, we compare the outcomes of two alternative mechanisms:
(i) Deferred Acceptance (DA), whereby students can apply to as many colleges as they
want; and (ii) DA with no switches (DA-NS); i.e., once students are admitted they cannot
reapply and switch to another college.

DA. Under DA, both students apply according to their true preferences, i.e., R} =1 = 2
and RL = 2> 1. Then, when only one college opens a seat, we observe that both stu-
dents compete for it, and the student the college prefers the most is assigned and the
other remains unassigned. However, notice that students are then assigned to their sec-
ond preference, so they may have incentives to reapply in the second period and switch
to their exante top preference, depending on the realized value of the unknown com-
ponent of their utility. By doing so, students impose a cost on colleges, and impose a
crowd-out externality on the other student, since the latter would benefit from getting
assigned to their most desired option in the first period. This situation is illustrated in
Figure A.1, where we show the case when only college 1 opens a seat.

DA-NS. When no switching is allowed, students still report their true preferences when
they apply to the system. However, when they learn that their match quality with their
college is poor, they cannot reapply and switch. This reapplication rule introduces a
trade-off relative to DA. On the one hand, it reduces switches, which eliminates the cost
paid by colleges. In addition, by eliminating competition in the second period, DA-NS
increases the probability that unassigned students in the first period will be admitted to
their top preference in the second period. On the other hand, preventing students from
switching imposes a higher cost if their match quality with their initial college is poor.
Hence, it is unclear which mechanism leads to higher aggregate welfare. We formalize
this result in Proposition 1 and defer the proof to Appendix A.
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FIGURE A.1. Dynamic inefficiencies under DA
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PROPOSITION 1. The difference between the aggregated exante welfare generated by DA-
NS relative to DA is given by

A A B B
DA-NS _3-8-(1—p) B-(1—p) |(ur —ud)+ (uzg —ut) 3-8-(1—p)
A = Tt : S A A S 2R
8 4 4 8
—— —_—
Higher Retention Improvement for first-year unassigned students Less switches after learning

The right-hand side of (1) illustrates this trade-off. The first term captures the lower
cost for universities, since switches disappear under DA-NS. The second term captures
the increase in students’ welfare due to the higher chances of assignment to their top
preference. Finally, the last term captures the negative effect of not switching when stu-
dents learn that their match quality with the college is poor. Then, depending on the
relative magnitude of these three components, either reapplication rule may be better.

Notice that switching can endogenously arise due to the two behavioral channels: (i)
initial mismatches and (ii) learning. Identifying the prevalence of each channel is an em-
pirical question; it is also our main identification challenge and a relevant question since
both channels have different consequences in the design of markets. On the one hand,
if students’ preferences are persistent over time, it may be desirable to restrict reappli-
cation and force students to internalize the negative externality they impose on other
students and colleges. On the other hand, if most of the switches are due to students’
learning about their match-quality, it may be welfare-improving to facilitate switching
behavior to avoid expost mismatches. Hence, the welfare implications are unclear.

PROOF. Proof of Proposition 1

DA. Under DA, students apply to all schools. Then, in the first period, the expected
utility is
B

1 1 /4 1 4 1
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In the second period, the value depends on the realized assignment in the first period,
all of which happens with probability 1/4:

1. If u=((A,0),(B,0)), then the second-period expected utility is

LIPS DO S AN B S "

1 0+4 (ul +u2)+4 Uy +4 uy .

2. Ifu=1((A,1),(B,2)), there are four scenarios depending on the signals observed by
the two students. More specifically, let £ = (5 A B) be the signals observed by the

end of period 1. Then,

e If ¢ = (1,1), which happens with probability p?, both students remain enrolled.
Then the expected utility in the second period is u{* + u& + 21.

e If ¢ = (I,—1), which happens with probability p - (1 — p), B reapplies and
switches with probability 1/2 and remains in 2 otherwise. Then the expected
utility in the second period is uf! + 1+ 3 - (uf — 1 +uP) - .

o If ¢ = (—I,1), which happens with probability p - (1 — p), A reapplies and
switches with probability 1/2 and remains in 1 otherwise. Then the expected
utility in the second period is u¥® + 1+ 3 - (uft — 1 +us') — 3.

e If ¢ = (—1,—1), which happens with probability (1 — p)2, both students reap-
ply. Then the expected utility in the second period is % - (uf' +uf —21) + 1 -
(e +uf =)+ 1 (W +uf )+ 1 (g +uf) -7

3. If u=((A,2),(B,0)), only A learns, and thus there are two scenarios:

e If ¢4 =, which happens with probability p, then A stays and B reapplies. Thus,
B

the expected utility is ug' + 1+ 5 - uf + % - uP.
o If ¢4 = —, which happens with probability 1 — p, then A and B reapply. Then
the expected utility in the second period is § - (ug' — 1) + 3 - (uf +uf — 1) + % -

(uf +uf = 1)+ §- (uf 4 uf) - F o,

4. If u=((A,0),(B,1)), only B learns, and thus there are two scenarios:

* If ¢8 =1, which happens with probability p, then A reapplies and B stays. Thus,
A

the expected utility is uf + 1+ % - uf' + 1 - ug".
* If ¢8 = —1, which happens with probability 1 — p, then A and B reapply. Then
the expected utility in the second period is £ - (uf — 1) + - (uf +uft — 1) + §-
(uf +ug —0) + 5 (uf +ug) = -7,
DA-NS. Under DA-NS, the assignment is performed using DA but students are not al-
lowed to switch in the second period. Then,
1 1 /4 V.1 4 1 g
1 0+4 (ul +u2)+4 Uy +4 uy .
In the second period, the value depends on the realized assignment in the first period,
all of which happens with probability 1/4:
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1. If u=((A,0),(B,0)), then the second-period expected utility is

1 1 A B 1 4 1 g
ZO+Z(U1+U2)+ZUQ+ZU1
2. If u=1((A,1),(B,2)), there are four scenarios, as in the case for DA:

e If ¢ = (,1), which happens with probability p?, the expected utility in the sec-
ond period is uf! + uf +21.

e If ¢ = (I,—1), which happens with probability p - (1 — p), the expected utility in
the second period is uf* + u2.

e If ¢ = (—I,1), which happens with probability p - (1 — p), the expected utility in
the second period is uf* + uZ.

e If ¢ = (—1,—1), which happens with probability (1 — p)2, the expected utility in
the second period is u{' +uf — 2I.

3. If u=((A,2),(B,0)), only A learns, and thus there are two scenarios:

* If ¢4 = I, which happens with probability p, the expected utility is u4' + 1 + % ‘
uZB + i . u{g .

e If ¢4 = —, which happens with probability 1 — p, the expected utility in the

second periodisug — 1+ 4 -uf + 1. uB.

4. If p=((A,0),(B,1)), only B learns, and thus there are two scenarios:

o If ¢8 =, which happens with probability p, the expected utility is u? +1+ 4 -
u’f‘ + % : u‘24.

e If ¢ = —I, which happens with probability 1 — p, the expected utility in the

iod is uB 1. ,A 1 A
second period is uy’ — I+ 5 -ui + 7 - uj.

Then, taking the difference for each scenario, we obtain no differences in the ex-
pected utility in the first period. For the second period we obtain that:

1. If p=((A,0),(B,0)), there is no difference between DA and DA-NS.
2. If u=1((A,1),(B,2)), there are four scenarios as in the case for DA:
e If¢ = (1,1), then the difference in expected utility is zero.
e If ¢ = (I, 1), then the difference in expected utility is
1 T
A L (., B_ B\ _T_( A . B
'LLl +l+2 <U2 Z+U1) 2 (Ul +'LL2>

_ug—uf l—7

2 2
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e If ¢ = (—1,1), then the difference in expected utility is

1 T
u23+l+§-(u‘147l+u§4)f§f<uf+u23)

7u‘14—u§‘ l—71

N 2 2

o If ¢ =(—1,—I), then the difference in expected utility is

1 1 1
Z-(uf+u§—2l>+1-(u?—i—uf—l)—i—i-(uf—&-uf—l)

1
—l—Z-(u?—l—uF)—T—(uf—&—ug—Ql)

Uy — Ug Ug — Uy
— l — T

3. If u=((A,2),(B,0)), only A learns, and thus there are two scenarios:
« If ¢4 =1, then the difference in expected utility is zero.

o If ¢4 = —[, then the difference in expected utility is
1 1 1 1 1
Z~(u’;—l)—l-z-(u’24+u1B—l)+Z-(u’24+u2B—l) +1'<uf+u23) 17
1 1
— (’U/24—Z+2UQB+4UF)
A_ A

Cup —uy -7
4 4

4. If u=((A,0),(B,1)), only B learns, and thus there are two scenarios:
o If ¢ =, then the difference in expected utility is zero.

o If ¢8 = —I, then the difference in expected utility is

1 1 1 1 1
0P b () () o] ()

4 4
1 1
- (u{g—l+2-uf+4-u§4>
_UQBfulB l—7
4 4

Finally, multiplying by the corresponding probabilities and adding up terms, we ob-
tain that:

. o A A B _ | B
pa-pa-ns=20 p>~<“1 i B “1+3.(l—r>>.

4 4 4 2
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FIGURE A.2. Distribution of preference of assignment around admission cutoffs
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Notice that these theoretical examples assume that we can find students like A and
B in the data—that is, students with similar application scores but different assignment
preferences. Figure A.2 shows the distribution of preference of assignment around ad-
mission cutoffs. We observe that a significant fraction of students assigned just above
admission cutoffs do not rank those programs as their top choices.

APPENDIX B: APPENDIX TO SECTION 3
B.1 The Chilean Mechanism

The Chilean mechanism is a variant of the student-proposing Deferred Acceptance al-
gorithm! in which students who tie for the last seat of a program are not rejected if va-
cancies are exceeded. More formally, the allocation rule can be described as follows:

Step 1. Each student proposes to their first choice according to their submitted ROL.
Each program rejects any unacceptable student, and if the number of proposals ex-
ceeds its vacancies (g), rejects all students whose scores are strictly less than the ¢-th
most preferred student.

IBefore 2014; the algorithm used was the university-proposing version. The assignment differences be-
tween both implementations of the algorithm are negligible Rios et al. (2021).
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Step & > 2. Any student rejected in step k& — 1 proposes to the next program in their sub-
mitted ROL. Each program rejects any unacceptable student, and if the number of
proposals exceeds its vacancies (g), rejects all students whose score is strictly less than
the ¢-th most preferred student.

The algorithm terminates either when there are no new proposals or when all re-
jected students have exhausted their preference lists. The final allocation is obtained
by assigning each student to the most preferred program on their ROL that did not re-
ject them. As a side outcome of this, the algorithm generates a set of cutoffs {§j}j M’
where 5; is the minimum application score among students matched to program j € M.
Hence, for any student ¢ with ROL R; and set of scores {Si]‘ }j e the allocation rule can
be described as

iis assigned to j < j € R;, s;; > 5;and s,y <5, Vj' € R; st. j' =g, j,

where >, is a total order induced by R; over the set {j : j € R;} , such that j’ g, j if
and only if program j’ is ranked above program j in R;.

B.2 Regression discontinuities

This section provides causal evidence that the preference of assignment affects different
outcomes of interest. We use a regression discontinuity design that exploits the algo-
rithm’s cutoff structure to perform the allocation. As a result of the assignment process,
each program gets a cutoff such that all students whose weighted score is above it are
granted admission, whereas all students with scores below the cutoff are wait-listed and
thus may have to enroll in a lower-ranked preference. Hence, if we assume that students
around the cutoff are similar and only differ in their right to enroll in a higher preference,
we can estimate the causal effect of interest.

Formally, we estimate the effect of being assigned to a higher preference using the
following specification:

Yop = fp(dbp) + 0p - Zpp + €bp,

where y, is the average outcome of interest for students in bin of distance b applying
to preference p; f, is a smooth function of the distance d, between the bin’s score and
the cutoff of their preference p; 7, is an indicator function equal to 1 if bin b’s score is
greater than or equal to the cutoff of their p-th preference and 0 otherwise; and ¢, is an
error term.?

Notice that many of the outcomes we consider—e.g., switches and dropouts, among
others—rely on students enrolling in the centralized system. If there are significant dif-
ferences in the enrollment rates between students right above and below the cutoff, then
the two samples would not be directly comparable. In that case, there would be a selec-
tion problem, and thus we would not be able to point estimate the causal effect of the
preference of assignment on the outcomes of interest (Dong, 2017). To show that this is

2Similar results are obtained running these models at the student-preference level. We report the results
at bin-preference level to match the plots included.
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not the case, in Figure B.1b we show the binned means of the probability of enrolling in
the centralized system as a function of distance to the cutoff. In addition, the line repre-
sents the predicted values obtained from estimating the regression discontinuity model
described in (B.2), considering as dependent variable the probability of enrolling in the
centralized system. As Figure B.1b and column (1) in Table B.1 show, there are no signif-
icant differences in the enrollment probabilities between students above and below the
cutoff, so we conclude that the potential selection problem is not a concern in our case.

To assess the causal effect of the preference of assignment on other outcomes, we
focus on students who applied to at least two programs in the centralized system, and
we restrict the analysis to the top preference of each student for simplicity.® In Figure 2
we display binned means of different outcomes as a function of the distance between
the cutoffs in their top preference and the students’ scores, and in Table B.1 we report
the corresponding estimation results.

Figure B.1b shows the probability of enrolling in the student’s top preference. As re-
ported in column (2) in Table B.1, exceeding the cutoff increases the probability of en-
rollment in the top preference by 51.3%. Notice that this is not 100% for two reasons:
(i) students whose score exceeds the cutoff may decide not to enroll, and (ii) students
whose score was below the cutoff may end up enrolling after being pulled from the wait-
list. Figures B.1c and B.1d are discussed in Section 2, and show that being above the
cutoff significantly reduces the probability of reapplying and switching programs within
the system. These results are confirmed in columns (3) and (4) in Table B.1. Figure B.1f
and column (5) in Table B.1 exhibit a similar pattern, as it shows that the probability
of major-switching also decreases among students above the cutoff. In contrast, we ob-
serve no significant difference in university switching. Finally, in Figure B.1g, we show
that there is no effect of exceeding the cutoff on dropout rates.

TABLE B.1. Causal Effect of Crossing the Cutoff in Top Reported Preference

Enroll  Enroll Top Pref. Reapp. Switch  Switch Major  Switch University =~ Dropout

@ 2 3 4 ()] 6) (@]
Zip —0.004 0.543 —0.087 —0.058 —0.030 —0.038 0.008
(0.016) (0.017) (0.018)  (0.017) (0.014) (0.014) (0.011)
Observations 5,637 6,512 7,608 5,234 5,234 5,234 5,635

Note: Standard errors in parenthesis.

B.2.1 Regression Discontinuities with True Preferences Our previous analysis focuses
on the effect of being above or below the cutoff of the top reported preference on differ-
ent outcomes. Using the 2019 cohort and our nationwide survey, we can perform a sim-
ilar analysis to estimate the causal effect of being above or below the cutoff of students’
top-true preference on their outcomes. In Figures B.2a and B.2b, being above the cut-
off significantly reduces the probability of reapplying to the system and being assigned

3Notice that we could perform the RD analysis for every cutoff, i.e., we could compute for every program
the causal effect of being assigned to that program when it is listed as a top reported preference. In this
sense, the causal effect we estimate under the current specification is the average of causal effects across
all programs that are listed as a top preference.
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FIGURE B.1. Effect of Cutoff Crossing
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to a different program the next year. These results are consistent with those reported in
Figure B.1, with the effect on reapplications being slightly smaller and that on switching

being somewhat larger in magnitude compared with the analysis above.

FIGURE B.2. Effect of Cutoff Crossing for Top-True Preference
(a) Reapplication (b) Reassignment
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B.3 Additional Evidence

FIGURE B.3. Students flow across states
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B.3.1 Perceived persistence and preference of assignment The regression discontinuity
results show a causal effect of preference of assignment on students’ persistence with re-
spect to their initial assignment. To show that this is partially explained by the mismatch
channel, we use the 2020 survey on students’ preferences and beliefs. Figure B.5 shows
the average “perceived" probability of remaining enrolled in the same program after 1
year, by preference of enrollment. We observe that there is a significantly lower “per-
ceived" probability of enrollment for lower-ranked preferences. On average, students
believe that there is an 85% probability of remaining in the same program after a year
for their first reported preference, whereas it is close to 65% for programs ranked below
the fourth choice. Figure B.5 also provides evidence of forward-looking behavior (simi-
lar to the data patterns observed for students’ switching probabilities),* which suggests

that—in the aggregate—students’ subjective beliefs are close to rational expectations
beliefs.

FIGURE B.5. Average “perceived" probability of remaining enrolled in the same program, by
preference of enrollment
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The previous evidence does not guarantee that there are match effects between stu-
dents and programs that are correlated with college persistence. For instance, a similar
pattern could be observed if all students agree on their preference rankings over pro-
grams, and most of the correlation between reported preferences and college persis-
tence was due to programs’ characteristics. To rule this out and give evidence of match
effects, we exploit the panel structure of students’ ROLs as we observe the perceived
persistence probability for every program listed in the ROL. We consider the following
specification:

Pij=a; +aj + XijB+ BrR(J) + €4y,

4Notice that stop-out and dropout probabilities do not exhibit a positive correlation with the preference
of assignment. Thus, they cannot drive most of the correlations shown in Figure B.5.
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TABLE B.2. Two-way Fixed Effects Regression Results

Dependent variable: Prob. of Persistence

Estimate Std. Error
Preference 2 -9.891 8.3652e-03
Preference 3 -16.844 8.7019e-03
Preference 4 -21.355 9.3909e-03
Preference 5 -24.831 1.0631e-02
Preference 6 -27.148 1.1805e-02
Preference 7 -29.164 1.3202e-02
Preference 8 -30.329 1.5004e-02
Preference 9 -31.995 1.6876e-02
Preference 10  -34.757 1.9483e-02
Constant 89.181 1.0186e-02
Observations 159,894
R? 0.095
Adjusted R? 0.095

where P;; is the perceived persistence probability of student ¢ in program j; «; is stu-
dents i’s fixed effect; «; is program j’s fixed effect; X;; are student-program characteris-
tics that include a third-degree polynomial of the application score of student i in pro-
gram j; R;(j) is the position of program j in ROL R;; and ¢;; is an i.i.d shock. Table B.2
shows the estimation results. The preference of enrollment has a significant and strong
effect on the perceived probability of persistence. We conclude that there are match ef-
fects in the setting, which exhibit a strong correlation with students’ college persistence.

The results reported so far show that (i) there is a clear effect of the preference of
assignment on the switching behavior of students, (ii) a significant fraction of students
forecast this, and (iii) these results cannot be explained by students’ or programs’ char-
acteristics solely.

APPENDIX C: APPENDIX FOR SECTION 4
C.1 Model stages

Each period involves the following stages and decisions:
Period 1:

(i) Applications: Given students’ preferences, beliefs about their admissions and en-
rollment probabilities, prior beliefs about their unknown abilities, and the labor
market return of studying each option, students make application decisions to the
centralized system. After obsrving their preference shocks’ realizations, students
choose an ROL that maximizes their expected utility.

(ii) Assignment: Once applications have been submitted, a matching algorithm com-
putes students’ assignment to each program. In particular, this process is approxi-
mated by drawing a set of admissions cutoffs from the joint distribution of cutoffs
and assigning students according to the matching algorithm’s cutoff structure.

(iii) Enrollment: Once the assignment is realized, students face probabilities of enroll-
ment in their assigned program or choosing the outside option.
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(iv) PSU preparation: At the beginning of students’ first year of college, or in the out-
side option, students choose whether to prepare for and retake the PSU tests. This
decision affects their flow utility while in college and can improve the set of poten-
tial programs they can enroll in in the second period if they choose to reapply to
the system.

(v) Grades: At the end of the year, students receive their college grades—which are
noisy signals of their unknown abilities—and update their beliefs.

Period 2:

(i) Reapplications: At the beginning of period 2, students observe the realization of
new preference shocks and PSU scores and, given their updated beliefs about their
unknown abilities, decide whether to reapply® to the centralized system.

(ii) Assignment: Once applications are submitted, a matching algorithm computes
students’ assignment to each program. In particular, this process is approximated
by drawing a set of admission cutoffs from the joint distribution of cutoffs and as-
signing students according to the matching algorithm’s cutoff structure.

(iii) Enrollment: Once the assignment is realized, students face exogenous probabil-
ities of enrollment in their assigned program. If students do not enroll in their as-
signed program, they can choose between staying in their current enrollment or
dropping out of college.

(v) Grades: At the end of the year, students receive their college grades and update
their beliefs regarding their abilities.

Period 3:

(i) Dropout: Students face an exogenous sequence of dropout probabilities for every
year they are enrolled after their second period.

(ii) Expected graduation: Students face a graduation probability for every year they
are enrolled after completed the formal duration of their program. Both dropout
and graduation probabilities are estimated from the data, depending on programs’
and students’ observable characteristics.

(iii) Labor market: Students who graduate receive lifetime earnings and nonpecu-
niary payoffs based on their college decisions. Students who do not graduate re-
ceive the value function of students who dropped out.

C.2 Learning

Proposition 3 allows us to obtain the posterior mean and variance for student i’s un-
known ability in any program j'. We show how the student’s statistical problem can be

5Students can also apply for the first time in period 2.
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rewritten to make inference about each component in A};. To make inference about
“ .
Aimj we can write

ZJt—A +e?

SAY, = AL, + > win Al e,
k

ijt

@A%t =E; 1 ZijAgk + Vgt
k

SAG —Bey | D win Al | = vou
k

where

l/thNN< zm y g+2wjk0 >

where now we treat A} it —E;_1 [Z e Wi kA;‘k] as the new signal, and we make infer-
ence about A% | m . This statistical problem now fits into the frame of DeGroot (2005) (we
can follow 31m11ar steps to make inference about each AY).

We can now write the posterior mean unknown ablhty if student i enrolls in program
4’ in the second period, after receiving the first-period signal a,;; in program j:

FEq (A;-Lj/|a7;j1) =F ( im —‘r-Zw ’kAzk|aZ]1>
=F (A;-ij, |aij1> + ij’kEl (A;Lk’aijl) .
k

Notice that if the student switches majors, i.e m; # m;, she learns nothing about her
major-specific unknown ability in her new program. This implies that the posterior
mean equals the prior; that is,

El (A?itmj/ ‘aiﬂ) = O
So the posterior mean is given by

1 Aim |aij1 = 02 a;;1
O'?]-I-Zk w?kog—‘rogn

o.w

We now turn to compute the posterior mean for the subject-specific unknown abil-
ity, i.e, By (A;‘k{aijl) Vk. Although the student’s subject-specific unknown ability does
not vary across programs, given that grades depend on the average ability and average
ability varies depending on the program-specific admissions weights w;, the amount of
subject-specific unknown ability learned by the student will be program-specific.
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The subject-specific posterior unknown ability is given by

2
W310,Q541
E1 (Af]ain) = 5 2] s 3
Tg+ O+ D Wik
k

Finally, we can write the posterior mean for the unknown ability in any program ;'

by
2 le/leloiaijl .
ifm #£m;
2
w B 02402, +> kwjk(rg J J
1 ij/’a'ul 2 > W Wi ola;;
Tm @ijl 1 9511%519s il O.W

2 2 2 2 2 2 2 2
Ug+zkwjkas+am Jg+am+zk w03

Intuitively, the posterior mean places more weight on the signal for subjects with
a higher admissions weight in w;. In this sense, student i learns more about her math
ability if she enrolls in engineering, which places a high admissions weight on math.

C.3 Model solution

In this subsection, we describe the solution of the model via Backward Induction.
In period three, the terminal value function is given by

Ty (" —(Tije+1) i
L. .. .. — g ¢!’ t/—T“t w B
sz]t(,u/zg277_13t) = FEy Z Pijt’ Ee Z B WUig(t4t'") + B I ‘/ij(t-i—t/—rijt)(:uz]Q)
t'=7;;+1 =0
L " B - Value fcn Labor market
Tf —tlf(‘l'ijt%»l) ., 7 ,
d t t'—7Ti;
+E | Y P | Ee Do B ey |+ BT Vit —ri0)
t' =741 1 —=0 N———
L - - Value fcn Dropout

where 412 is the posterior unknown ability of student i in program j after observing
the period one signal, and 7;;; is the number of academic years the student has com-
pleted in program j at the beginning of period three. In period three, there are no de-
cisions to be made, and the value functions can be collapsed to the period-two value
functions of enrolling in program j in the following way:

Vijt (g2, Tijt) = wijt — L{(G£0)n(rs0=0)} O + BEe [Vije1(tize, Tije+1)]

where C*° is a first-time enrollment cost.
The value function in period one is then given by

Vije(lij1, Tije, Sie) = Hé’%XEo [Uz’jt —djOP*" — 16520, C+

5/ / EmazROL(TZ—jt + 1a§it+17ui2(aijl))dﬂ-(aijl)dF(git+1|§it7dz$t) .
a;j1 7 Sit+1 —_—————  —

continuation value of reapplications signal future scores
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Notice that in period one, the value function of enrolling in program j considers that
(i) the student will update her beliefs about her unknown abilities for every program
(1i2), (ii) in the next period, her scores could change if she retakes the PSU (df, = 1), and
(iii) she will have the option of submitting an optimal application in the second period
(EmazROL (-)). In Appendix C.5 we derive analytical expressions for the continuation
value of reapplications.

Actions. In periods one and two, students can choose to submit an application list.
The indirect utility over assignment for student 7 to program k in period ¢, given her
current enrollment in program j, v;x¢|j, can be written as

viktlJ = Piy - Vige + (1 — Pf) - max{Vjot, Vijit }

Given students’ indirect utilities over the assignment and their beliefs about admis-
sion probabilities, students choose an application list—depending on their application
type—as detailed in Section 4.3.3.

C.4 MIA

Chade and Smith (2006) show that the optimal portfolio problem is NP-Hard. However,
when admission probabilities are independent® and the cost of applying to a subset of
programs S only depends on its cardinality—i.e., ¢;(S) = ¢(|S]) for some function c—the
unconstrained problem is Downward Recursive, and the optimal solution is given by a
greedy algorithm called the Marginal Improvement Algorithm (MIA).

MIA: Marginal Improvement Algorithm (Chade and Smith (2006))

Initialize Sg = 0.

Select j, = argmax;can s, {U(Sn—1Uj)}

U (Sp—1Ujn) — U(Sn_1) < c(Sn—1Ujn) — c(Sp_1), then STOP.

Set .S, =Sn—1UJjn.

MIA recursively adds programs that give the highest marginal improvement to the
portfolio, as long as they exceed the marginal cost of adding them. Olszewski and Vohra
(2016) show that MIA also returns the optimal ROL when the number of applications is
constrained and when ¢(S) is supermodular. If Assumption 4 does not hold, the strict
inequality in MIA’s stopping criteria becomes a weak inequality. In this case, if students
face degenerate admission probabilities, there could be a multiplicity of best response
(He (2012)). We discuss this potential identification threat in Larroucau and Rios (2018).
Assumption 4 is a sufficient condition to rule out the multiplicity of best response.

6Notice that in our case, in Assumption 4 we have assumed independence of beliefs about admission
probabilities.


https://www.econometricsociety.org/

Submitted to Unknown Journal Dynamic College Admissions 19

C.5 EmaxROL

In this subsection, we analyze the problem of computing the expected value of reporting
an optimal ROL in the centralized system, in which the expectation is taken over next-
period preference shocks. Formally, let the utility of being assigned to program j by u; =
uj + €5, then define the EmaxrROL by

EmaxROL :=E, |U(Rmaz) == max  U(R')—c(R)
RER,|R|<K
where, given Assumption 4 and an ROL R = {r1,...,rs},
k-1

UR)=2 + (1 =pr) 2ry+... + H(l_pm)'zrkv
=1

where z; =p; -uj =p; - (4; +¢;) foreach j € M.

Finding a potentially closed-form solution to this problem is relevant because it al-
lows us to characterize the continuation value in any dynamic model in which students
can make application decisions over time. However, to the best of our knowledge, this
problem has not yet been analyzed in the literature. The following example shows why
this problem is different from computing the continuation value in a dynamic discrete
choice model, which is usually referred to as an Emax operator or inclusive value.

EXAMPLE (EmaxROL).

Consider a portfolio problem in which students can submit ROLs of length K =1
and there is no cost of application; i.e, ¢(R) = 0,VR € R. In this case, the EmaxROL
problem simplifies to the expectation—over the preference shocks—of choosing the
program that gives the highest expected utility over assignment; that is

EmaxROL :=E, [U(Rmam) = max  U(R')—c(R)
R'ER,|R'|<K

=E; |maxp;(u; +¢;
E[j/er]( J J)]

— E. | max p;ii; + pje;
E[j,ejpj j TPy J}

Even though in this case the EmaxROL reduces to the expectation of choosing the
best alternative in a discrete choice problem, now the preference shocks are weighted
by potentially different admission probabilities {p;}. This key difference—compared
with a traditional discrete choice problem—means that, even if we assume that pref-
erence shocks are distributed i.i.d type-I extreme value, the resulting random shocks,
pjej, won't have equal variance. This implies that the inclusive value formulas derived
by Rust (1987) do not hold.

The previous example shows that in general, the EmaxROL will not have a closed-
form solution, even when preference shocks are distributed i.i.d type-I extreme value.


https://www.econometricsociety.org/

20 Submitted to Unknown Journal

We next show sufficient conditions under which the EmaxzROL can be efficiently ap-
proximated.

C.5.1 Pairwise Stability Under mild assumptions, Fack et al. (2019) show that the allo-
cation outcome from constrained DA satisfies pairwise stability with respect to students’
true preferences. We can exploit this fact for efficiently computing the EmaxzROL.

When the allocation satisfies pairwise stability, the srtudent’s problem reduces to
choosing the most preferred program among the programs for which she is expost ad-
missible. That is, given a realization of programs’ cutoffs, { P;} 7, student i’s allocation ,
w(il{Pj}jes), satisfies pairwise stability if and only if

pliles, {Pj}jeq) = argmax  U; +&;
J€Ji{Pj}jeq)

where
Ti{Pj}jeq) ={i€ T :si; > P} J{i =0}

This implies that we can write the EmaxzROL as follows:

EmaxROL :=E, [U(Rmax) = max U(R) - C(RI):|
R'eR,|R|<K

|

and when ¢;; are distributed i.i.d type-I extreme value, the previous expression re-
duces to

—Epy o |Ee, Wi +ei | (P}
{Pj}Jej[ = LGL‘(?%%JEJ)U”—F Z]H ities

EmazROL=BE(p;y; ; | Be; Le#(?%ﬁyej)ﬂij FeulPhes

=E{p}jes |l08 Z exp (i) | +7]
J€Ji({Pj}tjer)

where ~ is the Euler’s constant.

If we take the distribution of cutoffs to be invariant to students’ individual reports,
following an argument similar to that of Agarwal and Somaini (2018); we can estimate in
a first stage the distribution of cutoffs {Pj }jes and then estimate the structural parame-
ters of the model. This implies that we can compute the frequency of the random sets by
using the bootstrap realizations of the cutoffs J; ({P]l?} je ) just once, where b=1,..,Bis
a random sample of the bootstrap realizations of the cutoffs. We can then approximate
the EmaxROL by

EmarROL=Eqpy,., log| >, exp(@y) | +7
jeJi{Pj}jer)
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Zlog Z exp(ﬂij) +
beB  \jei({Pl}jer)

B

Pairwise stability in the dynamic problem. We can a follow a similar calculation and
give an expression for the expected value of reporting an ROL in our dynamic setting.
The expected value over assignment to program k, given that student i is currently en-
rolled in program j, is given by

Vikt = PiiVike + (1 — P) max{Vjos, Vije }

= P (Vike + €ire) + (1 = P) max{Viot + eiot, Vije + €ije }-
then we can write

E. [m}ngikt} =E. {mkaxpﬁ (Vzkt + €ik:t> +(1-P5) max{ Vot + €iot, ‘7ijt +€ije )
= PSE. {mkax (Vikt + €ike) | + (1 — P5) Ec [max{Vios + €iot, Vije + €ijt }]

and we get that
EmaxROL(Tij¢, 85¢, a31) =
3" Pflog > exp (Vike)

beB keJi({ P res Fit)
B

+ (1 — Pf)log (exp (Vij¢) +exp (Vior)) +7

Finally, when students retake the PSU in the first period, d;,_; = 1, we also need to
integrate over students’ future scores. Under Assumption 5 and using Gauss-Hermite
polynomials, we can approximate the integral with stochastic scores over EmaxROL by

/ﬁ EmaxROL(Tijt, 5it,ai1) dF (8¢ |8it—1,djs_1) =
Sit

future scores

3" Pflog > exp (Viir)

beB le']i({Plb}lejvskit>

1
— w = +

(1—Pf)log (exp ( _ijt) + exp (‘_/i()t)) + v


https://www.econometricsociety.org/

22 Submitted to Unknown Journal

where
sk = max{sF;;_1, 5%}
with

i ay(1+V20psuwg)sie i sire >0
it = .
oo (14 V20psuzi)sie  if s =0

where n,, is the number of nodes at which we evaluate the integrand and wy, is the
k-th integration weight for the k-th integration node z;,, given by the Gauss-Hermite for-
mula. The accuracy of the previous approximation will depend on the number of nodes
used to approximate the integral, n,,, and the number of joint draws of the cutoff scores,
B.

C.6 Exogenous Models

C.6.1 Dropout and Graduation We assume that the academic progression concludes
with students either (i) graduating from their program (after period 2) or (ii) dropping
out. We assume that these outcomes are exogenously given so that the probabilities of
graduating and dropping out depend only on the student’s observable characteristics
and on their first-year and second-year choices. This is formalized in Assumption 2.

ASSUMPTION 2. Students have rational expectations over their graduation and dropout
probabilities. Moreover, we assume that this decision follows a multinomial logit model,
ie.,

d
g exp (Xojr¢p9) d exp (Xigrv*)
iiT = oy’ and P’L]T = o
1+ > exp(Xijr0?) 1+ > exp(Xijr0)
a€{g,d} a€{g,d}
where Ping and P%T represent the probabilities that student i decides to graduate and

drop out from program j after T periods enrolled in the program, respectively; X;;, is a
vector of observable characteristics;” and)9,1® are vectors of parameters that need to be
estimated.

C.7 Enrollment
Once students submit their optimal ROLs, they observe a draw from the joint distribu-

J
on the mechanism’s cutoff structure, the allocation can easily be obtained by assigning
each student to the highest preference for which their application score is greater than
or equal to the realized cutoff.

tion of cutoffs. Let 5t = {Et-} . be the vector of realized cutoffs in period ¢. Based
€

"The vector includes a constant, student’s gender, a dummy variable that identifies whether the student’s
family income is below the median of the income distribution, and student’s high school GPA.
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After the assignment results are released, students decide whether to enroll in their
assigned preference, remain enrolled in their current program if they are reapplying,
or take the outside option. For simplicity, we do not model this decision and simply
assume that students enroll in their preference of assignment with some probability P
that depends on their observable characteristics.® This is formalized in Assumption 3.

ASSUMPTION 3. Student i enrolls in her assigned program in period t with probability
P5,, which is given by

e e (Xfu)
i 1+exp (X{9°)’

where X¢ is a vector of observable characteristics.”

If students do not enroll in their new assignment, we allow them to choose the best
alternative between remaining in their current program for one more period or choosing
the outside option. In Appendix C.3, we show that the solution to the student’s problem
can be obtained via Backward Induction.

C.8 Admission Process

Every time a student decides to (re)apply, we assume that they go through the following
steps: (i) PSU tests, (ii) application, and (iii) enrollment.

C.8.1 PSU Tests As described in Section 3, the assignment is based on a series of ad-
mission factors, which include the PSU tests and two additional scores related to the
student’s performance during high school. Let £ = {1,..., L} be the set of admission
factors and let 53 = {s;;1};, be the vector of scores of student 7 in period ¢. In addi-
tion, let w;y; be the weight that program j assigns to factor [ € £ in period ¢. Then, the
application score of student ¢ in program j and period ¢ is given by

Sijt = E Wijtl * Sitl-

lel

Since students can retake the PSU tests and reapply, we need to model (i) the evo-
lution of their scores and (ii) the evolution of their beliefs about the admission weights
that programs will use in the future. To model the former, we assume that the scores
of student ¢ in period ¢ + 1, §;:41, are exogenously given conditional on their scores in
period t, s;;, and the observable characteristics, X;. To address the latter, we assume
that students correctly forecast future weights. This assumption is likely to hold in prac-
tice, since admission weights are relatively stable over time. These considerations are
formalized in Assumption 4.

8Students pay an enrollment cost C¢ for the first time they enroll in a program, which captures both
administrative and potentially psychological costs of the first-time enrollment process.

9The vector includes a constant, student’s gender, a dummy variable that identifies if the student’s family
income is below the median of the income distribution, and student’s High-school GPA.
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ASSUMPTION 4. Conditional on retaking the exam, the scores of student i in periodt + 1
are exogenously given and distributed according to

Sit41~ Iz, x,(s), Vi

where Fy,, x,(s) is the distribution of scores conditional on the initial vector of scores 5;;
and the observable characteristics X;. In addition, we assume that students correctly fore-
cast the admission weights {w, } 1c ¢ Used by each program j in each period t.

As a simplifying assumption, we further assume that the evolution of scores in each
admission factor is proportional to the student’s current scores, as described in Assump-
tion 5.1°

ASSUMPTION 5. The scores of student i evolve according to the following process:
Sit+1|8it, Xi ~ max{sit, Si141}

with

_ (1 +vigp1)sae i sae >0
Silg+1 = { ’ ’ ’ and vy~ N(0,0psu),

aol(1+vigy1)sie ifsiur =0

where s;y; is the score of student i in exam | in period t, 5;; is the average Math-Verbal
score of student i in period t, and {cy, ag },c » and ops,, are parameters to be estimated.

Finally, we assume that students must pay a cost for retaking the PSU tests. This cost
accounts for the direct cost of taking the exam and the time spent to prepare for it. Since
we do not have information regarding preparation time to retake the PSU for this cohort,
we assume that this cost is a constant CP**.

APPENDIX D: APPENDIX FOR SECTION 5
D.1 Additional Evidence
APPENDIX E: APPENDIX FOR SECTION 6
E.1 Estimator

We now introduce the estimator, closely following Bruins et al. (2018). Let y; :=
(yit, - yiq) be a collection of Q outcomes for student 7', and let y := {y;}}¥., denote
the aggregate outcomes of all students i € {1,..., N'}. Similarly, let z; and x be individual
and aggregate students’ and programs’ characteristics, and 7; and n be individual and
aggregate random shocks. Let 3, be the vector of parameter estimates of the auxiliary
model; that is,

N
1
B := argmax L(y, x; ) = argmax I Zl(ymi;ﬁ),
8 B i=1

10This specification captures the fact that students use the maximum application score from both pools
of test scores for each program they apply to.
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FIGURE D.1. Application to Education around Cutoff for BVP
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where I(-; ) is the log-likelihood function given the vector 3. Let n° := {#?}}V, denote
a set of simulated draws for the random shocks of the structural model for simulations
s=1,...,5, where each set of draws is simulated independent of each other. Let § € ©
be a vector of parameters from the structural model, with dy < dg. Given the observ-
able characteristics x and a parameter vector 6 € ©, we can use the structural model to
simulate data y®(9) := {y?()}, and estimate the auxiliary model on each simulated
sample:

,@b = argmaxﬁ(yb(ﬁ), x; ).
B

Let 3(0) be the average of these estimates, i.e., 3(0) := & >5_, 3°(6). Then, the II
estimator minimizes the following function:

where W is a positive-definite weighting matrix.

For a given value of the parameters 6, and given the first-stage estimates—i.e., stu-
dents’ beliefs and enrollment, dropout, graduation, and employment probabilities—
computing the objective function Q(¢) involves solving the model via Backward Induc-
tion and then forward simulating outcomes.!! Solving the model is computationally ex-
pensive and especially computing the continuation value terms, since they depend on
realization of the random coefficients {; }; (which are known to students), which re-
stricts the number of draws of the random coefficients we can use to evaluate the objec-
tive function. To reduce the noise due to a small number of draws, we consider a larger

1n which we have suppressed the dependency on the first-stage estimators for readability.
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number of draws for those shocks that do not affect the backward induction. The cur-
rent set of estimation results uses 50 draws for shocks that do not affect the backward-
induction procedure (preference shocks, enrollment shocks, etc.) and 5 draws for ran-
dom coefficient shocks per student'?. In Algorithm 1, Appendix E, we describe in detail
how we perform the estimation and discuss some related technical considerations.

E.2 Auxiliary models and weighting matrix

We use as an auxiliary model a combination of regression models—including data
analogs of the grade equations, wage equations, linear probabilities models of gradua-
tion, linear probability models of switching and dropout, and RDD models—and a vec-
tor of moment conditions. The parameters of the model are identified jointly by the mo-
ment conditions generated by the auxiliary model. However, some sets of parameters
are directly linked to particular moment conditions. We describe this auxiliary model
and the matrix of weights in detail in Appendix E.2.

We describe now in detail the regressions and moment conditions we use in the es-
timation and the sets of parameters that explain most of each moment’s variation.

E.2.0.1 Grade equations. The auxiliary model that targets the grade equations’ struc-
tural parameters () are given by the regression analogs of Equation 4:

Gij1 =By, + B3 Aij + B3 Z] + B{1{j = R1i(1)} + B3 51im,; + By 51k, + €31

Gijo = 5"7}[””]‘ + B3 Sija + By Aij + B0 Z] + 811 1{j = Rei (1)} + By52im; + 5173521‘1@ + 5%2’
and

Gij2 = By + BlsSwije (Bls + Blr Swij2) Gij1 +&35,
where sy, ; and sy, are the shares of major m; and college-type k; in the ROL of stu-
dent i associated with the assignment in period ¢ respectively; 1{j = Ry (1)} is an in-
dicator function that equals 1 if the student is assigned to her top-reported preference
relative to the ROL associated with the assignment in period ¢; S;;2 = 1 if the student

is in her second academic year in period 2 and S; ;2 = 0 otherwise; and Sw;;o = 1 if the
student switched programs in period 2 and Sw;j2 = 0 otherwise.

E.2.0.2 Wage equation. The auxiliary models that target the parameters in the wage
equation () are given by

log(W;(7=4)) = 5i\mj + 55‘1‘11@ +B3G+ B2 27 + €j(r=4)
and
log(Wm,;+) = ﬂg’,\mj + Bé‘ij + Bé\mj 2+ €myrs
where 7 is tenure after graduating'>.
12We have run robustness checks estimating the model with up to 10 realizations of random coefficient

shocks per student, and estimation results are relatively similar.
13See Section 3.1 for a description of the aggregate data on wages.


https://www.econometricsociety.org/

Submitted to Unknown Journal Dynamic College Admissions 27

E.2.0.3 Nonpecuniary labor market parameters. The auxiliary model that targets the
parameters that specify the nonpecuniary payoffs in the work force («*) is given by the
following linear probability model:

Yij = B s1im; + 05 1{j = R1i(1)} + BY Aij + Bi Ag; + B8 Z] + €35

E.2.0.4 Learning parameters. The auxiliary models that target the parameters asso-
ciated with students’ learning process (02, 02, o2, and o) are given by the following
linear probability models of switchings and dropout: for each outcome O € {switching
major, switching math-type, switching program, switching major within math-type,
switching math-type within major, switching up, switching down, switching out feasi-

ble, switching out unfeasible, dropping out},
Oij = Blm, + B3 Aij + B3 Z] + B31{j = R1i(1)} + Bgs1im, + Bgs1in; + B7Gij1 + €5,
where O;; equals 1 if student i enrolled in program j has an outcome O and 0 otherwise.

E.2.0.5 Unobserved preferences’ parameters. The auxiliary models that target the pa-
rameters associated with students’ unobserved and persistent preferences (parameters
governing i, ;, aix;, and C) are given by the following regression discontinuity design
(RDD) models:!* for each outcome O%PP ¢ {switching program, reapplying, switching
program, switching up or out unfeasible},

RDD RDD RDD RDD RDD
OfPP =By "+ 89" 1{D1ci >0} + B3 Dici+B9  1{Dici =045} x Dici+efy
where OftPP equals 1 if student i enrolled in program j has an outcome 022 and
0 otherwise; D1 ; is the distance to the cutoff of the top-reported preference for student
7.

E.2.0.6 Weighting matrix and standard errors. We use as a weighting matrix a diago-
nal matrix. Each element on the diagonal is the inverse of each data moment’s variance,
which we obtain via a bootstrap procedure. We combine moments from different data
sets and sample sizes. We weight up some moments in the weighting matrix that are key
to identifying the parameters that affect the learning and initial mismatching channels:
the correlations between students’ first-year college grades and the different types of
switching, the levels and causal effects of the RDD models, and the fraction of students
assigned to their top-true preference. In addition, we weight up some moments that af-
fect the baseline values for our counterfactuals’ outcomes of interest: moments related
to the evolution of scores; broad-major dummies in the wage and grade equations; cor-
relation between grades and wages; shares of retakers, dropouts, and switchers; and top-
reported market shares.'> We do not use the optimal weighting matrix because of the
numerical complexities involved in computing the derivatives of the objective function
Q(0). Therefore, our estimator will be unbiased but not efficient.

14We consider only students whose application scores for their top-reported preference are at a distance
less than or equal to 30 points.
15The exact weighting scheme is available upon request.


https://www.econometricsociety.org/

28 Submitted to Unknown Journal

E.3 Technical considerations
We estimate the model via II for the following reasons:

(i) We only have remote access to data on students’ grades, and CRUCH only allowed
us to obtain regression results and summary statistics at the aggregate level; this
makes it difficult to estimate a likelihood-based estimator. However, II allows us to
estimate a rich statistical representation of the data on students’ grades and use
the estimated parameters to construct moment conditions to estimate the model’s
structural parameters.

(ii) Parameters that involve the grade equation and wage equation have a clear
reduced-form representation in the data.

(iii) Estimating students’ preferences in a portfolio setting is computationally chal-
lenging for likelihood-based estimation methods (see Larroucau and Rios (2018)).
However, given a set of model parameters, simulating data from our structural
model is relatively fast because under Assumption 4, we can simulate strategic
ROLs efficiently using the MIA.'6

In addition, the structural model yields a mixture of continuous and discrete out-
comes. This feature complicates the estimation procedure for a simulation-based
method such as II, because the objective function, @ (9), becomes a multidimensional
step function that inherits the discontinuities produced in the simulated data.!” Bruins
et al. (2018) propose a solution to overcome these computational difficulties by intro-
ducing noise and smoothing to the objective function. They refer to this estimation pro-
cedure as “Generalized Indirect Inference" (GII). With the smoothed objective function,
the researcher can use a gradient-based optimization method to minimize the objective
function, which tends to be faster than gradient-free optimization routines. We choose
to avoid this smoothing procedure, and we estimate the objective function and find
the global optimum using MIDACO solver ( Schlueter et al. (2013)).!8 We choose to do
this because the model has close to 260 parameters to be estimated, and the gradient
must be computed through numerical simulation. Thus, the evaluation of the gradient
would take several minutes. The computational time of this approach could be signifi-
cantly reduced by parallelizing the numerical approximation of the gradient. However,
we have chosen to parallelize the objective function’s computation instead and increase
the number of draws in the forward-simulation stage to smooth the objective function.
Since solving the model and forward-simulating outcomes are completely independent
across students, we parallelize the algorithm’s outer loop to evaluate Q ().

16See Appendix C.4.

17For a given realization of the random shocks, measures constructed from discrete outcomes of the
model change discontinuously when we change the value of the structural parameters.

I8BMIDACO uses an evolutionary hybrid algorithm based on the Ant Colony Optimization (ACO) meta-
heuristic (Schlueter et al. (2009)).

19The model is coded in RecppArmadillo and parallelized with OpenMP.
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Algorithm 1 Computing Q (9)

Input. Value of the structural parameters 6 and first-stage estimates p, pe, P4 P9, and
pv.

Output. Value of the objective function @ ().

Step 1. For each student ¢, program j, and simulation b

Step 1.a. Draw a vector of random coefficients o™,

Step 1.b. Solve the model by Backward Induction,

Step 1.c. For each simulation in N and for each date, draw a vector of preference
shocks &]"*"""7, enrollment shocks ¢;""*""""*, wage shocks ¢"*""", vector of random
cutoff scores P™s™rc from the empirical distribution of cutoffs, vector of PSU score
shocks v;""*""""¢, vector of unknown abilities A;""**"""¢, and grade shocks 7"""*""""
Step 1.d. Forward simulate the model and obtain a set of outcomes y; ="',
Step 2. For each simulation, estimate the auxiliary model parameters, 3= (), on

the simulated sample
Step 3. Compute 3 (0) = y—x= >, 32, B™"e (6)

Step 4. Return Q (0) := (5(9) — Q)T w (5(0) - ﬁ)
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Mean average share majors ROL (year 1)

Mean average share majors ROL (year 2)

0.14 0.022 0.048 0.036 0.109

0.064 0.048 0.005 0.231 0.296
0.134 0.029 0.048 0.068 0.126

0.093 0.044 0.009 0.226 0.222
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E.4 Results
TABLE E.1. Estimation Results - Goodness of Fit (I)

Targets Model Data
Share retakers 0.24 0.255
Share dropouts 0.059 0.054
Share dropouts females 0.043 0.046
Means share d dropouts low income 0.068 0.06
Share reapplicants 0.356 0.147
Share program switching 0.057 0.071
Share broad major switching 0.024 0.029
Means share major switching 0.045 0.044
Means share d switch math within major 1 0.002 0.004
Means share d switch major within math 1 0.025 0.028
Means share d switch uni 0.035 0.04
Means share d switch college type 0.021 0.021
Share dropout end of first period 0.028 0.029
Share enrolls first in second period 0.129 0.05
Share first year in second period 0.189 0.102
Share second year in second period 0.277 0.38
Share top true is pref 1IROL 1 0.424 0.424
Share top true is pref 1ROL 2 0.512 0.443
Share ROL length 1 10 0.298 0.063
Share ROL length 2 10 0.304 0.062
Share d applies 1 0.663 0.654
Share d applies 2 0.399 0.223
Share toptrue prefs changed reapps 0.282 0.654
Share reapps from top reported prefs 0.321 0.256
Share reapps from top true prefs 0.037 0.076
Mean tuition of top reported prefs 3.717 3.776
Mean distance of top reported prefs 7.25 10.156
Mean relpos of top reported prefs -3.186 -1.845
Mean average share math types ROL (year 1) 0.2750.725 0.3870.613
Mean average share math types ROL (year 2) 0.3270.673 0.451 0.549

0.124 0.022 0.068 0.05 0.118

0.048 0.07 0.02 0.21 0.247
0.107 0.027 0.06 0.043 0.142

0.041 0.092 0.022 0.264 0.194

Note: Majors are Social Sciences, Science Education and Humanities, and Health. College types are CRUCH-Public,

CRUCH-Private, and Non-CRUCH.
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TABLE E.2. Estimation Results - Goodness of Fit (II)

Targets Model Data
Means corr norm broad majors grades 1 -0.208 -0.074
Means corr norm majors grades 1 -0.321 -0.1
Means corr norm math types grades 1 -0.124 0.009
Means share toptrue broad majors changed 0.145 0.213
Means share toptrue majors changed 0.21 0.281
Means share toptrue math types changed 0.089 0.296
Means share toptrue prefs changed from oo 0.28 0.617
Means share toptrue broad majors changed from oo 0.147 0.191
Means share toptrue majors changed from oo 0.19 0.209
Means share toptrue math types changed from oo 0.072 0.31
Means share d switch math type 0.022 0.019
Means means tuition of toptrue pref 1 low income 3.568 4.193
Means means tuition of toptrue pref 1 above median 4.089 4.465
Means means observed ability scores i of topreported pref 1 1.143 1.112
Means means observed ability scores program of topreported pref 1 1.693 1.467
Means share apply topreported with prob zero 0.316 0.299
Means means risk ROL 1 0.311 0.318
Mean average share college types ROL (year 1) 0.3720.3530.275 0.3410.458 0.188
Mean average share college types ROL (year 2) 0.350.3090.341  0.354 0.501 0.145
Norm difference on broad major shares 0.267 0.386
Means norm diff broad major shares from oo 0.17 0.338
Means norm diff math types shares 0.216 0.284
Means norm diff math types shares from oo 0.1 0.268
Mean average dummy math types (year 1) 0.514 0.843 0.359 0.641
Mean average dummy math types (year 2) 0.590.816 0.445 0.555
Mean average dummy math types (year 1, females) 0.62 0.791 0.447 0.553

Note: Majors are Social Sciences, Science Education and Humanities, and Health. College types

CRUCH-Private, and Non-CRUCH.

are CRUCH-Public,
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TABLE E.3. Estimation Results - Goodness of Fit (III)

Targets Model Data

Evolution of Score
Means scores evolution lang 0.042 0.033
Means scores evolution math 0.01 0.009
Vars scores evolution lang 0.009 0.035
Vars scores evolution math 0.01 0.006
Means scores evolution hist nozero 0.055 0.041
Vars scores evolution hist nozero 0.009 0.008
Means scores evolution cien nozero 0.059 0.058
Vars scores evolution cien nozero 0.009 0.01
Means scores evolution hist zero 0.067 0.068
Vars scores evolution hist zero 0.009 0.011
Means scores evolution cien zero 0.067 0.024
Vars scores evolution cien zero 0.009 0.013

Market Shares and Shares Within ROL
Shares broad majors within ROL (year 1)
Shares broad majors within ROL (year 2)
Norm difference on broad major shares
Means norm diff major shares
Means norm diff major shares from oo
Dummies broad majors within ROL (year 1)
Dummies broad majors within ROL (year 2)
Dummies broad majors within ROL (year 1, women)
Market shares broad major (enrollment 1)

Market shares broad major (enrollment 2)
Market shares broad major (enrollment 1, females)
Market shares broad major (enrollment 2, females)

Market shares by college type (year 1)
Market shares by college type (year 2)
Market shares by college type (year 1, low-income)
Market shares by college type (year 2, low-income)

0.354 0.362 0.054 0.231
0.319 0.401 0.053 0.226
0.267
0.421
0.213
0.527 0.537 0.083 0.388
0.50.579 0.09 0.382
0.392 0.544 0.14 0.491
0.635 0.056 0.014 0.018 0.008 0.033

0.022 0.021 0.002 0.069 0.121
0.535 0.069 0.022 0.023 0.015 0.04

0.034 0.027 0.003 0.092 0.142
0.601 0.056 0.013 0.023 0.009 0.038

0.028 0.041 0.003 0.11 0.079
0.428 0.072 0.023 0.036 0.019 0.055

0.042 0.053 0.006 0.156 0.11
0.6350.129 0.168 0.068

0.5350.163 0.207 0.095
0.794 0.047 0.055 0.105
0.744 0.048 0.05 0.158

0.358 0.3190.09 0.21
0.350.264 0.114 0.264
0.386
0.494
0.419
0.496 0.452 0.164 0.274
0.469 0.39 0.195 0.331
0.502 0.318 0.202 0.376
0.506 0.068 0.014 0.036 0.036 0.058

0.03 0.0310.01 0.077 0.134
0.529 0.074 0.013 0.035 0.028 0.054

0.028 0.032 0.009 0.074 0.123
0.517 0.06 0.015 0.045 0.036 0.068

0.029 0.042 0.012 0.109 0.066
0.538 0.065 0.014 0.043 0.027 0.065

0.028 0.044 0.01 0.105 0.061
0.518 0.165 0.23 0.087

0.556 0.153 0.206 0.084
0.6450.18 0.14 0.035
0.688 0.164 0.115 0.033

Note: Majors are Social Sciences, Science Education and Humanities, and Health. College types are CRUCH-Public,

CRUCH-Private, and Non-CRUCH.
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TABLE E.4. Estimation Results - Goodness of Fit (IV)

Targets Model Data
Auxiliary Model: Grade Equation 1
Grade 1 observed ability 1 0.502 0.445
Grade 1 d pref 1 0.002 0.067
Grade 1 female 0.249 0.171
Broad Majors 3.8914.3614.2113.659 4.0753.696 4.269 4.162
Grade 1 broad major share 0.187 0.196
Grade 1 college major share -0.051 -0.086
Grade 1 hat sigma gl 0.712 0.681
Auxiliary Model: Grade Equation 2
Grade 2 observed ability 2 0.439 0.457
Grade 2 d pref1 -0.004 0.028
Grade 2 female 0.161 0.218
Broad Majors 3.9774.4854.3453.785  4.096 3.769 4.306 4.325
Grade 2 second-year student 0.203 -0.014
Grade 2 broad major share 0.157 0.171
Grade 2 college major share -0.037 -0.308
Auxiliary Model: Time Series for Grades
Grades ts no switchers constant 0.44 0.837
Grades ts no switchers slope 0.912 0.813
Grades ts switchers constant 2.734 3.508
Grades ts switchers slope 0.478 0.285

Note: Majors are Social Sciences, Science Education and Humanities, and Health. College types are CRUCH-Public,

CRUCH-Private, and Non-CRUCH.

TABLE E.5. Estimation Results - Goodness of Fit (V)

Targets Model Data
Auxiliary Model: Wage Equation
Broad Majors 2.9152.536 2.251 2.974 2.5242.691 2.143 2.715
Wage grades 2 wages 0.013 0.013
Wage observed ability college wages 0.082 0.136
Wage female wages -0.258 -0.187
Wage standard error 0.076 0.067

Auxiliary Model: Wage Growth Equation
Wage growth broad major dummies
Wage growth broad major-specific linear

Wage growth broad major-specific quadratic

2.61.931.7792.193
0.1190.194 0.138 0.275
-0.003 -0.008 -0.007 -0.021

2.116 2.208 1.752 2.078
0.1140.176 0.141 0.236
-0.004 -0.009 -0.012 -0.021

Auxiliary Model: Non-Pecuniary Utility Equation

Work np pref 1

Work np observed ability np

Work np observed ability college np
Broad Major

Work np standard error

0.044 0.037
0.055 0.173
0.009 -0.04
0.56 0.531 0.604 0.594 0.442 0.31 0.403 0.519
0.199 0.227

Note: Majors are Social Sciences, Science Education and Humanities, and Health. College types are CRUCH-Public,

CRUCH-Private, and Non-CRUCH.
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TABLE E.6. Estimation Results - Goodness of Fit (VI)
Targets Model Data
Auxiliary Model: Droput Equation
Broad Major 0.592 0.616 0.608 0.608  0.482 0.494 0.494 0.52
Grade coeff. -0.055 -0.086
Ability -0.101 -0.037
Top Pref. 0.012 0.022
Female -0.171 0.015
Percentage Broad Major / College Type -0.018-0.008 -0.002 -0.006
Auxiliary Model: Program Switching Equation
Broad Major 0.916 1.068 1.048 0.925 0.801 0.781 0.821 0.822
Grade coeff. -0.152 -0.148
Ability 0.043 0.04
Top Pref. -0.048 -0.029
Female -0.046 0.008
Percentage Broad Major / College Type -0.056 0.009 -0.042 0.031
Auxiliary Model: Broad Major Switching Equation
Broad Major 0.516 0.589 0.65 0.552  0.429 0.436 0.463 0.471
Grade coeff. -0.092 -0.075
Ability 0.055 0.018
Top Pref. -0.016 -0.001
Female 0 0.012
Percentage Broad Major / College Type -0.150.05 -0.086 0.016
Auxiliary Model: Major Switching Equation
Broad Major 0.9121.085 1.062 0.887 0.6 0.576 0.61 0.611
Grade coeff. -0.172 -0.106
Ability 0.068 0.03
Top Pref. -0.035 -0.004
Female -0.005 0.011
Percentage Broad Major / College Type -0.071 0.019 -0.084 0.023
Auxiliary Model: Math Type Switching Equation
Broad Major 0.405 0.504 0.498 0.43 0.254 0.237 0.242 0.265
Grade coeff. -0.079 -0.044
Ability 0.03 0.005
Top Pref. -0.017 -0.003
Female -0.001 0.008
Percentage Broad Major / College Type -0.023 0.007 -0.029 0.012

Note: Majors are Social Sciences, Science Education and Humanities, and Health. College types are CRUCH-Public,

CRUCH-Private, and Non-CRUCH.
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TABLE E.7. Estimation Results - Goodness of Fit (VII)

Targets Model

Data

Auxiliary Model: Major Switching within Math Equation

Broad Major -0.001 0.001 0.002 0.025  0.044 0.037 0.042 0.051

Grade coeff. 0.002 -0.009

Ability -0.003 0

Top Pref. -0.003 0

Female -0.004 0.003

Percentage Broad Major / College Type 0.003 -0.002 0.005 0.002
Auxiliary Model: Math Switching within Major Equation

Broad Major 0.506 0.582 0.566 0.482 0.377 0.363 0.397 0.384

Grade coeff. -0.091 -0.069

Ability 0.035 0.026

Top Pref. -0.02 -0.002

Female -0.008 0.005

Percentage Broad Major / College Type -0.044 0.01 -0.049 0.013
Auxiliary Model: Switching College Type Equation

Broad Major 0.346 0.3920.414 0.366  0.313 0.309 0.329 0.324

Grade coeff. -0.051 -0.052

Ability 0.022 0.017

Top Pref. -0.005 -0.004

Female -0.008 -0.001

Percentage Broad Major / College Type 0.04 -0.127 -0.006 -0.059

Note: Majors are Social Sciences, Science Education and Humanities, and Health. College types are CRUCH-Public,
CRUCH-Private, and Non-CRUCH.
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TABLE E.8. Estimation Results - Goodness of Fit (VIII)

Targets Model

Data

Auxiliary Model: Switching Up Equation

Broad Major

Grade coeff. -0.008
Ability 0.009
Top Pref. -0.042
Female -0.016

Percentage Broad Major / College Type
Auxiliary Model: Switching Down Equation

Broad Major

Grade coeff. -0.029
Ability 0.009
Top Pref. 0.005
Female -0.004

Percentage Broad Major / College Type
Auxiliary Model: Switching Out-Feasible Equation

Broad Major

Grade coeff. -0.084
Ability 0.011
Top Pref. 0.007
Female -0.013
Percentage Broad Major / College Type 0.046 0.03

Auxiliary Model: Switching Out-Unfeasible Equation

Broad Major

Grade coeff. -0.032
Ability 0.014
Top Pref. -0.018
Female -0.014
Percentage Broad Major / College Type -0.015 0.015

-0.035-0.001

-0.052 -0.035

0.1030.1210.1140.115  -0.001 0.005 0.004 -0.005

0.002
0.002
-0.025
-0.001
0.003 0.014

0.223 0.242 0.236 0.212 0.1850.1710.1850.186

-0.032
0.01
0.007
-0.001
-0.023 -0.005

0.386 0.44 0.416 0.367 0.458 0.444 0.465 0.466

-0.089
0.025
-0.003
0.009
-0.016 0.015

0.205 0.265 0.282 0.23 0.055 0.056 0.063 0.069

-0.011
0.001
-0.001
0.001
-0.001 0.008

Note: Majors are Social Sciences, Science Education and Humanities, and Health. College types are CRUCH-Public,

CRUCH-Private, and Non-CRUCH.
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TABLE E.9. Estimation Results - Goodness of Fit (IX)

Targets Model Data
Auxiliary Model: RDD Switching
Constant 0.205 0.162
Discontinuity -0.069 -0.045
Slope - Left -0.001 0.001
Slope - Right 0.002 -0.001
Auxiliary Model: RDD Re-Application
Constant 0.488 0.226
Discontinuity -0.104 -0.08
Slope - Left -0.004 -0.002
Slope - Right 0.005 0.002
Auxiliary Model: RDD Switch Up or Out Unfeasible
Constant 0.146 0.049
Discontinuity -0.079 -0.034
Slope - Left 0 0
Slope - Right 0.001 -0.001
Auxiliary Model: RDD Teaching
Constant 0.035 0.047
Discontinuity 0.033 0.03
Slope - Left -0.001 -0.003
Slope - Right -0.001 0.002
Other Moments
Share of preference of assignment 0.517 0.303 0.092 0.036 0.017 0.009 0.41 0.298 0.146 0.079 0.033 0.017
0.006 0.006 0.005 0.005 0.004 0.009 0.004 0.002 0.001 0.001
Means means share broad majors within ROL 1 enr 1 0.891 0.838
Means means share college type within ROL 1 enr 1 0.857 0.684
Means share toptrue majors changed 0.21 0.281
Means share assigned to top true 0.124 0.211
Means share toptrue majors changed from oo 0.19 0.209
Means norm diff college type shares from oo 0.133 04
Means corr norm college types grades 1 0.078 0.035
Market shares broad major (enrollment 1) 0.635 0.056 0.014 0.018 0.008 0.033 0.506 0.068 0.014 0.036 0.036 0.058
0.022 0.021 0.002 0.069 0.121 0.03 0.031 0.01 0.077 0.134
Market shares broad major (enrollment 2) 0.535 0.069 0.022 0.023 0.015 0.04 0.529 0.074 0.013 0.035 0.028 0.054
0.034 0.027 0.003 0.092 0.142 0.028 0.032 0.009 0.074 0.123
Market shares broad major (enrollment 1, females) 0.601 0.056 0.013 0.023 0.009 0.038 0.5170.06 0.015 0.045 0.036 0.068
0.028 0.041 0.003 0.11 0.079 0.029 0.042 0.012 0.109 0.066
Market shares broad major (enrollment 2, females) 0.428 0.072 0.023 0.036 0.019 0.055 0.538 0.065 0.014 0.043 0.027 0.065
0.042 0.053 0.006 0.156 0.11 0.028 0.044 0.01 0.105 0.061

Note: Majors are Social Sciences, Science Education and Humanities, and Health. College types are CRUCH-Public,
CRUCH-Private, and Non-CRUCH.

APPENDIX F: APPENDIX FOR SECTION 7
E1 Understanding Behavioral Channels

To assess to which extent students’ switching and dropout decisions are explained by
the behavioral channels previously described, namely, initial mismatches and learning,
we consider three counterfactuals:

1. No Systematic Learning: Sets the value of the standard deviation of each unknown
ability to zero. Hence, there are no unknown abilities.

2. No Mismatch: Assigns each student to their top preference, independent of pro-
grams’ capacities. As a result, programs’ capacities may be exceeded. This counter-
factual eliminates initial mismatches, which allows us to isolate the learning chan-
nel.
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3. No Mismatch or Systematic Learning: Combines the two previous counterfactuals,
which allows us to isolate the learning channel from the effects of the idiosyncratic
shocks (random learning).

The first column in Table E1 reports the results of the baseline model, which includes
the two main behavioral channels. The next three columns match the three counter-
factuals described above. We group the first two columns as With Mismatches and the
last two columns as No Mismatches to highlight the fact that in the latter, the mismatch
channel is not present. Notice that in the case with no mismatches the number of seats
offered by each program may be exceeded. Finally, each row represents an outcome of
interest, including statistics regarding reapplications, switching, dropout, enrollment,
and on-time graduation, among others.

TABLE F.1. Results Counterfactuals - Behavioral Channels

With Mismatches No Mismatches

Outcome Baseline No Systematic Baseline No Systematic
Learning Learning

Reapplicants [%] 42.01 37.52 21.73 19.08
Program switchings [%] 5.51 2.63 1.47 0.10
Retakes PSU (%] 23.15 21.64 7.53 7.50
Dropouts [%] 6.66 5.46 13.82 12.20
Dropouts - first year [%] 2.93 1.79 10.43 8.90
Applicants in first period [%] 69.28 65.62 89.70 87.92
Enrolls same program [%] 27.92 29.98 49.94 51.70
Assigned to top true preference (%] 12.19 14.06 100.00 100.00
Unassigned in first period [%] 51.86 54.52 10.30 12.07
Graduate late [%] 94.97 94.56 93.18 93.08

Note: Switching and dropout rates are computed with respect to the total sample of participants.

With Mismatches. We start by focusing on the first two columns. First, we observe
that having no learning decreases the number of reapplications, program switches, and
dropout rates but increases the number of unassigned students in the first period. By
shutting down the learning process, we increase the persistence of students’ prefer-
ences over time, which translates into lower switching rates. Additionally, without the
gains from learning, the value from enrolling in the centralized system drops. There-
fore, a higher fraction of students choose the outside option. Finally, we observe that the
systematic learning channel explains close to one-half of students’ switching behavior.

No Mismatches. We now focus on the case with no mismatches. Recall that in this
counterfactual, all students are assigned to their most desired preference, possibly ex-
ceeding the vacancies of programs. For this reason, the fraction of students who are
unassigned decreases considerably, and thus these results are not directly comparable
to those previously described. However, comparing the two columns labeled “Baseline”
provides an idea of the benefits of eliminating congestion and initial mismatches. In
particular, we observe that the fraction of students who reapply is considerably smaller,
and so are the switching rates. The reason is that this counterfactual assigns students to
their most desired program, which eliminates congestion and initial mismatches in the
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assignment, and thus reduces the incentives for students to reapply or switch. On the
other hand, we observe an increase in the dropout rates at the end of the first year and
within the first 2 years. However, notice that this rate is computed relative to the entire
population, so naturally this increases as more students are assigned under this coun-
terfactual.?® We also observe that eliminating mismatches improves on-time graduation
rates and the fraction who graduate from their first enrollment, which are mainly driven
by the reduction in switching rates. These results suggest that eliminating initial mis-
matches is a sensitive approach to reduce switching and increase on-time graduation

rates, and thus improve the system’s yield.

E.2 Finding equilibrium beliefs

Index each counterfactual experiment and the baseline model by 7; then the rational
expectations equilibrium cutoff distributions, p (7), can be computed with the following

algorithm:

201f we compute the dropout rate for those students who are assigned, we observe that the rates are

similar for both columns labeled as Baseline (6.66,/(100 — 51.86) = 13.83% vs. 13.82/(100 — 10.3) = 15.4%).
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Algorithm 2 Computing 5 (1)

Input. Structural parameter estimates 0, first-stage estimates p, Pe, P4 P9 and P™, and tol-
erance level ¢;,;.

Output. Rational expectations equilibrium cutoff distributions p (1)

Step 1. For each program j

Step 1.a. Solve the model and simulate outcomes given the rules implied by counterfac-
tual 7 and the estimated objects (é,ﬁ, pe. pd p9, 15“’)

Step 1.b. Obtain a set of simulated ROLs and scores (RY, RY, 57, s9)

Step 1.c. For each program j, estimate the mean and standard deviation of the cutoff
distributions 69 = (19,57)

Step 2. 64,5 =2€401, k=1,p=0.9
Step 3. While 5diff > €40l

Step 3.a. For each student 4, solve the model via Backward Induction given 7, the esti-
mated parameters (é, pe, pd p9, 15“’) , and cutoff distributions !, and obtain the contin-
uation values for each student and state

Step 3.b. Forward simulate first period ROL R¥ given 7, the estimated parameters
(é7 pe. pd p9, 15“’) , cutoff distributions 5* !, and continuation values

Step 3.c. For each program j, estimate the mean and standard deviation of the cutoff
distributions 55-’ = (ﬂ?, &?)

Step 3.d. Given initial first-period applications R¥, second-period applications Rg_l,
and students’ scores s} and s5~!, run the Chilean matching mechanism and obtain an al-
location p* (R’ﬁRl;_l,s’f,s’;_l)

Step 3.e. Given p* (R'f, Rg_l, sk, s’;—l), 7, the estimated parameters
(é,ﬁe,ﬁd, 159,13“’), cutoff distributions p*~!, and continuation values, forward simulate

second period ROLs RE,
Step 3.f. Given (R’f, Rgf Logh, 512“* 1) , run the boostrap procedure and estimate the ratio-

nal expectations cutoff distributions 5* Take a convex combination of the realized cutoffs 5*
and pF ! (pointwise), i.e, pF = pkﬁkfl + (1 - pk) ik

Step 3.g. Estimate the mean and standard deviation of the cutoff distributions 6% =

J
ik ~k
(#5.95)

Step 3.h. Compute 64; 7 = |[6F —6F 71| p(r)=p""" k++
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Algorithm 3 Constrained Deferred Acceptance with signal and bonus 1

Input. Indirect utilities v, application scores s, cutoff distributions P, and application
score bonus v
Output. Optimal ROL R (v, s, P, ;)
Step 1. For each program j

Step 1.a. Compute admission probabilities given cutoff distributions P and ap-
plication scores 5(j) = {s1,...5j—1,%r5,5j4+1,---57 }

Step 1.b. Compute and store optimal ROL R (v, 5(j)) using MIA
Step 2. Compute optimal signal

sj = argmax {R(v,ﬁj)}
J

Step 3. Compute optimal ROL R(v, p;)

E.3 Hypothetical scenario

In 2022, we conducted a survey to elicit preferences and beliefs, which is similar to
the 2019-2021’ versions. In this version, we included a question to elicit information
about how students would change their application lists if they could apply to a sin-
gle program—i.e., applying under CDA with K = 1. Figure E1 shows the distribution
of the chosen program in the hypothetical scenario relative to their submitted ROL. La-
bels from 1-10identify the share of students whose hypothetical program coincides with
their k-th reported preference; 77, BT, and Other identify the share of students who re-
port in the hypothetical scenario a program outside their submitted ROL; finally, NR
identifies the share of students who did not respond to the survey question. We observe
that under CDA with K = 1, a significant fraction of students would choose a program
that is not their top-reported program on their current list (close to 40%). This suggests
that a significant fraction of students would react strategically and take into account
their admission probabilities when facing a binding constraint on the length of the list,

consistent with our modeling assumptions.
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FIGURE E.1. Distribution of applications under CDA with K =1
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