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Abstract. Problem definition: Motivated by our collaboration with an online dating com-
pany, we study how a platform should dynamically select the set of potential partners to
show to each user in each period in order to maximize the expected number of matches in
a time horizon, where a match is formed only after two users like each other, possibly in
different periods. Academic/practical relevance: Increasing match rates is a prevalent
objective of online platforms. We provide insights into how to leverage users’ preferences
and behavior toward this end. Our proposed algorithm was piloted by our collaborator, a
major online dating company in the United States. Methodology: Our work combines sev-
eral methodologies. We model the platform’s problem as a dynamic optimization problem.
We use econometric tools and exploit a change in the company’s algorithm in order to esti-
mate the users’ preferences and the causal effect of previous matches on the like behavior
of users, as well as other parameters of interest. Leveraging our data findings, we propose
a family of heuristics to solve the platform’s problem and use simulations and field experi-
ments to assess their benefits. Results: We find that the number of matches obtained in the
recent past has a negative effect on the like behavior of users. We propose a family of heu-
ristics to decide the profiles to show to each user on each day that accounts for this finding.
Two field experiments show that our algorithm yields at least 27% more matches relative
to our industry partner’s algorithm. Managerial implications: Our results highlight the
importance of correctly accounting for the preferences, behavior, and activity metrics of
users on both ends of a transaction to improve the operational efficiency of matching plat-
forms. In addition, we propose a novel identification strategy to measure the effect of pre-
vious matches on the users’ preferences in a two-sided matching market, the result of
which is leveraged by our algorithm. Our methodology may also be applied to online
matching platforms in other domains.

History: This paper is an honorable mention in the 2021 Manufacturing & Service Operations Management
Practice-Based Research Competition.
Supplemental Material: The online appendix is available at https: //doi.org/10.1287 /msom.2022.1107.
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1. Introduction

a limit on the number of likes (e.g., Hinge), and still

In the past two decades, hundreds of dating services
have emerged, making dating a $12 billion industry
worldwide (Lin 2018). Moreover, online dating plat-
forms have become one of the most common channels
for couples to meet: 39% of heterosexual couples and
65% of same-sex couples who met in the United States
in 2017 did so online (Rosenfeld et al. 2019).

A common feature across many dating platforms is
that they display a limited number of potential part-
ners’ profiles (or simply profiles) to each user on each
day. Some platforms, like Tinder and Bumble, imple-
ment this by imposing swipe limits, others put in place

others explicitly limit the number of profiles displayed
on each day (e.g., Coffee Meets Bagel). As described
on Bumble’s website, platforms do so to “help foster
more genuine, quality connections for our users and
encourage more intentional swiping.” As a result, one
of the primary roles of dating platforms is to select the
set of profiles—the assortment—to display to each user
on each day based on the preferences and characteris-
tics of the users involved. This is the problem we
study in this paper.

The aforementioned problem resembles the classic
assortment optimization problem, where a retailer must
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decide the set of products to display in order to maxi-
mize the expected revenue obtained from a series of
customers. However, distinctive features from the dat-
ing context make our problem particularly novel.
First, both users must mutually agree—by liking each
other—to generate a “match,” which considerably
affects the probability that a transaction occurs. Thus,
platforms should consider the preferences and behav-
ior of the users on both ends of a potential match
when making assortment decisions. Second, users
interact often and repeatedly with the platform, with
those living in the same geographical area being part
of the same “market.” Importantly, users may interact
sequentially (i.e., users need not see each other’s pro-
file (henceforth, see each other) in the same period).
Thus, platforms must carefully manage the timing of
these interactions. Notice that some of these features
are not exclusive to dating platforms and may be rele-
vant in other online platforms, including freelancing
(e.g., UpWork), ride-sharing (e.g., Blablacar), and ac-
commodation platforms (e.g., Airbnb).

The size and relevance of the dating market highlight
the need to make these platforms more efficient. To con-
tribute toward this goal, in September 2018 we part-
nered with a major dating app to help them optimize
the assortments to be shown to their users.! Our part-
ner’s platform offers a limited set of profiles (ranging
from three to nine) to each user on each day, and their
primary objective is to maximize the number of matches
generated. In addition, the assortments offered by the
platform must satisfy a series of business constraints
(e.g., users can be shown to each other only if they find
each other acceptable, no user can see a profile more
than once, etc.).

1.1. Contributions

Our paper combines a variety of methodologies and
makes several contributions. First, we propose a model
of a dynamic matching market mediated by a platform
that captures the key elements of our industry part-
ner’s problem. Second, we estimate users’ preferences
and behavior on the platform using our partner’s data.
In particular, we identify an effect of past matches on
users’ current behavior and propose a novel identifica-
tion strategy to estimate it without bias. Third, we
introduce a class of algorithms that incorporates our
estimation findings. Finally, we test the efficiency of
our algorithms in two field experiments and find a sig-
nificant increase in the number of matches. We now
describe these contributions in more detail.

1.1.1. Problem Formulation. To capture our industry
partner’s problem, we introduce a stylized model of a
dynamic matching market mediated by a platform.
The platform hosts a set of users and must decide, in
each period, which subset of profiles to show to each

user in order to maximize the overall expected num-
ber of matches over some horizon. In our model, users
log in each period with some time-dependent proba-
bility, and conditional on logging in, they observe a set
of profiles—an assortment—that satisfies the con-
straints imposed by the platform. Then, users decide
whether to like or not like each profile in their assort-
ment based on their preferences. A novel component
of our model is that we allow the like decisions to
depend on users’ past experiences in the platform. If
two users like each other, possibly in different periods,
a match is generated. Our goal is to find an algorithm
to maximize the total expected number of matches
generated by the platform over an entire time horizon.
We show that the platform’s problem is computation-
ally hard. Finally, we highlight that our model is gen-
eral enough to capture a broad array of match-
ing markets.

1.1.2. Estimating Users’ Preferences and Behavior
from the Data. To understand what drives users’ behav-
ior on the platform and to guide the design of our algo-
rithms, we use our industry partner’s data to estimate
users’ preferences and like decisions. Using observational
data, we find that the probability of liking new profiles is
negatively correlated with the number of matches
obtained in the recent past. This result suggests that there
exists a history effect on users’ behavior, by which users
are less likely to like other profiles when they have re-
cently succeeded in obtaining more matches. In order to
address the potential endogeneity problem in the estima-
tion, we use a quasiexperiment that introduces exogenous
variation in the number matches obtained by some users.
Our estimates show that each additional match reduces
the probability of a new like by at least 3%. Our identifica-
tion strategy also provides an important example of using
quasiexperiments in matching markets without interfer-
ence, which is an exciting new area of research.

1.1.3. Proposed Algorithms. Based on our previous
findings—namely, the estimated like probabilities, the
fact that the platform’s problem is computationally
hard, and the fact that the history effect on the like
probabilities is negative and significant—we establish
an upper bound for the platform’s problem, which can
be obtained by solving a linear program. This linear
program also serves as a building block for our family
of algorithms, which we call dating heuristics (DH). Our
algorithms differ from current practice by (i) using
improved personalized estimates for the like probabil-
ities, (ii) explicitly accounting for the probability that a
profile is liked back, and (iii) accounting for the history
effect and for the fact that the frequency with which
users log in may vary. Using simulations on real data,
we show that the proposed heuristics outperform rele-
vant benchmarks, improving the overall match rate by
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20%—45% relative to our partner’s current algorithm.
Roughly, 80% of the improvement comes from finding
better matches (via (i) and (ii)), and the remaining 20%
of the improvement is because of accounting for the
history effect.

1.1.4. Field Experiments. The simulation results con-
vinced our industry partner to test our algorithm in
practice. In collaboration with the company, we
designed and implemented two field experiments to
compare the number of matches in a treatment market
that uses our algorithm with the number of matches
attained in a set of control markets that use our part-
ner’s algorithm. The results of the field experiments
show that the number of matches increased by at least
27%, confirming the benefits shown in our simulations.
Given these positive results, we are collaborating with
the company to expand the use of our algorithm to
other markets.

1.1.5. Managerial Implications. Our results provide
valuable insights into platforms seeking to improve
their search and recommendation systems. Our
approach shows that having an algorithm that (i) uses
personalized estimates for the like probabilities to
account for idiosyncratic differences in taste across
users; (ii) accounts for the probability that a profile is
liked back, which allows for optimization of the uti-
lization of a scarce resource (slots to display profiles)
more efficiently; and (iii) accounts for time-dependent
user behavior, such as the history effect and the vary-
ing log-in rates, leads to substantial improvement. Our
simulations (in Section 6) attempt to quantify how
much each of these features contributes to the
improvement, and our field experiments (in Section 7)
further validate our approach. Finally, although we
focus on a dating market, some of the aforementioned
characteristics may also be present in other markets,
such as online labor markets, and so, our algorithmic
framework may prove useful in those settings as well.

The remainder of this paper is organized as follows.
Section 1.2 reviews the closest literature. Section 2
describes our partner’s platform and the data. Section 3
introduces our model, and Section 4 describes how the
like probabilities are estimated. Section 5 presents our
algorithms. Section 6 numerically evaluates the perform-
ance of our algorithms. Section 7 presents the results of
our field experiments, and Section 8 concludes.

1.2. Related Literature

Our work lies at the intersection of several streams of lit-
erature. First, our paper contributes to the large litera-
ture on assortment optimization. Most of this literature
assumes that incoming customers make independent
purchasing choices and that a decision maker must

decide which subset of products to offer in order to
maximize the expected profit. Talluri and van Ryzin
(2004) introduce a general version of this problem, and
more recent papers have extended this model to include
capacity constraints (Rusmevichientong et al. 2010), dif-
ferent choice models (Davis et al. 2014, Rusmevichien-
tong et al. 2014, Blanchet et al. 2016), search (Wang and
Sahin 2018), learning (Caro and Gallien 2007, Rusmevi-
chientong et al. 2010), and online selection of personal-
ized assortments (Golrezaei et al. 2014, Berbeglia and
Joret 2020). We refer the reader to Kok et al. (2015) for
an extensive review of the assortment planning litera-
ture. The setting we consider in this paper differs from
the traditional assortment problem in several ways.
First, our paper is one of the first to analyze an assort-
ment problem where transactions (matches) are among
users and occur only if users see and like each other.
Second, although most of the assortment optimization
literature focuses on settings where consumers are short
lived and limited to one choice, users in our setting
have repeated interactions with the platform and can
like as many alternatives as they want from their daily
assortment. This introduces several complications (e.g.,
the set of feasible assortments must be updated dynami-
cally depending on users’ past decisions). Moreover,
because of the existence of the history effect, the proba-
bility that a user likes a profile is endogenous to the plat-
form’s previous choices, as it depends on the number of
recent matches obtained, which in turn, depends on the
assortments seen by all users in the past.

Our paper is also related to the literature on match-
ing platforms and specifically, on display optimiza-
tion in dating platforms. In this context, Kanoria and
Saban (2021) study how hiding quality information
can considerably improve the platform’s outcomes,
and Halaburda et al. (2018) show that platforms can
successfully coexist despite charging different prices
by limiting the set of options offered to their users.
We contribute to this literature by modeling more
closely how some dating platforms work, as users do
not leave the platform once they obtain a match. Also
related to our paper is the empirical literature on
understanding users’ preferences and behavior in dat-
ing markets. Previous papers show that preferences
may differ across genders (Fisman et al. 2006, 2008),
that there is no evidence that users behave strategi-
cally (Hitsch et al. 2010b), and that there exist strong
assortative patterns (Hitsch et al. 2010a). Other papers
empirically show the impact of design decisions and
information on matching outcomes. Lee and Niederle
(2014) show that the number of matches generated
can increase by allowing users to signal their preferen-
ces, whereas Yu (2018) shows that users” beliefs about
the market size affect their behavior. We contribute to
this literature by using a novel identification strategy



Rios, Saban, and Zheng: /mproving Match Rates in Dating Markets

4 Manufacturing & Service Operations Management, Articles in Advance, pp. 1-20, © 2022 INFORMS

to show that the history of past success affects the like
behavior of users and by proposing a dynamic algo-
rithm that leverages this finding.

Our paper is also related to the behavioral economics
and operations literature on context-dependent preferen-
ces (Tversky and Simonson 1993) and more specifically,
to the literature on satiation (McAlister 1982). These liter-
atures establish that the history of consumption and
interactions affects the way that choices are made. We
contribute to these literatures by empirically showing
that the context—through the history—can shape users’
behavior. Moreover, our paper contributes to the nascent
literature that analyzes how behavioral aspects can affect
optimal assortment decisions (Ovchinnikov 2019).2 To
the best of our knowledge, the only paper in this litera-
ture is Wang (2018), who studies the effect of incorporat-
ing prospect theory into consumer choice models.

Finally, our paper contributes to the literature on field
experiments in online platforms. Most platforms con-
stantly evaluate potential design changes through care-
fully crafted experiments, and these can be used by re-
searchers to test hypotheses, measure the impact of new
algorithms or interventions, etc. Recent examples in the
operations management community include Gallino and
Moreno (2018) and Cui et al. (2019) in e-commerce,
Singh et al. (2019) and Cohen et al. (2021) in taxi or ride-
sharing, and Martinez et al. (2021) in education.

2. Description of the Dating Platform and
the Data

Our partner’s platform has roughly 800,000 active

users in more than 150 geographical markets and uses

the same algorithm in all markets. We now briefly

explain how the platform works and describe the data

used for our empirical analysis.

2.1. How the Dating Platform Works

When users sign up to use the dating platform, they re-
port some personal information, including their age, gen-
der, height, race, religion, education, location, etc. They
also declare preferences regarding these characteristics in
potential partners. For example, users can declare a pre-
ferred age range, height range, a maximum distance from
their location, etc. Using this information, the platform
computes a set of potential partners (potentials for short)
for each user i that includes all users j such that i and j sat-
isfy each other’s preferences.

On each day and for each user, the platform selects a
limited number of profiles—an assortment—taken from
the user’s set of potentials. If a user logs in during that
day, they observe the assortment previously chosen by
the platform. Each assortment contains between 3 and 9
profiles (the median is 3; the average is 3.53 with a stand-
ard deviation of 0.67). Upon being presented with the
assortment, the user decides whether to like or not like

each profile in the assortment.” A match between two
users occurs if both users like each other. When a match
is formed, both users are notified.*

Importantly, users need not see each other in the
same period (i.e., if today’s assortment for user j con-
tains user i, this does not imply that j will be included
in i’s assortment on that same day). In fact, user j may
be included in i’s assortment in the future (or never). As
a result, there are two mechanisms by which matches
can be formed. The first mechanism is simultaneous
shows (i.e., both users see and like each other on the
same day). The second one is what we call the backlog.
Suppose that user j sees user 7, and i has not yet seen j.
Then, if j likes i, j is added to i’s backlog. Formally, the
backlog of user i on day t is the set of all users who have
liked i in the past (i.e., on any day 7 < t) and that i has
not yet seen. The backlog is particularly relevant
because it allows users to see each other sequentially,
generating a match immediately whenever a user likes
a profile from their backlog. We will refer to the profiles
in the backlog as backlog profiles and to the backlog pro-
files shown to a user in an assortment as backlog queries.
Backlogs will play a crucial role in our empirical analy-
sis in Section 4 and in our proposed algorithm.

We have access to the algorithm used by our partner
to select the assortments to show to each user on each
day, which we will use in our analysis. In addition to
guaranteeing that users see profiles only from their set
of potentials, the assortments offered by the platform
must satisfy a series of additional constraints, which we
refer to as business constraints. Examples include that
users find each other acceptable, that no user can see
the same profile more than once, and additional con-
straints on the composition of the assortment. It is
worth noting that the algorithm we will develop also
satisfies these constraints.

2.2. Data

We have access to data from all markets in which the
platform operates. The data we use in the analysis con-
sist of two parts.

1. User characteristics. For each user, we observe
their profile information, including their age, height,
location, education, religion, and race, as well as their
attractiveness score, which depends on their evalua-
tions (likes /not likes) received in the past.

2. User decisions and backlog queries. For each user
on each day, we observe whether the user logged in,
and if they did, we observe all the profiles shown to
them and their evaluations. Using these data, we com-
pute a set of usage metrics for the recent past, including
the number of days active, the number of matches
obtained, and the number of likes and not likes given
and received, among others. We compute each of these
metrics for different time windows, including the last
session (i.e., the last day on which the user logged in),
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the last day, the last week, and the last month, among
others. Finally, we also use these data to determine the
backlog of each user on each day.

A unique feature of these data is that they allow us
to observe the exact assortment offered to each user in
each period, including all characteristics of the profiles
involved. In addition, we have access to the full his-
tory of interactions between each user and the plat-
form, and so, we can describe the complete history of
each user in each period and include this information
in the estimation.

3. Model

We now propose a model to capture the problem faced
by our industry partner. Consider a discrete set of
users, denoted by Z ={1,...,I}, and a discrete set of
periods (days),” 7 ={1,...,T}. Each user i € 7 is associ-
ated with a vector of time-invariant characteristics X;.
This vector includes i’s personal information (e.g.,
height, location) and also, declared preferences regard-
ing these characteristics in potential partners (e.g., pre-
ferred height range, maximum distance radius). In a
slight abuse of notation, we denote by Xj; the vector
that includes X;, Xj, and also, the interactions between
i’s and j’s characteristics and preferences for each pair
(i,j) € Z X Z. The latter may include the age difference
between the users or whether they share the same race
or religion.

Using this information and for each user i € Z and
each period t, the platform computes an initial set of
potential partners that includes all users j€Z such
that i and j satisfy each other’s preferences and such
that 7 has not seen j before. The latter is to ensure, as is
common in dating platforms, that users see each pro-
file at most once. We denote the initial set of potentials
of user i by 2} and use 2! to denote the set of poten-
tials of i in period t. Moreover, the platform also
knows the initial backlog for each user i (i.e., the subset
of i’s potentials that have liked them in the past). We
denote it by %;, and we use %! C #! to denote the
backlog of user i at the beginning of period t (ie.,
those users who have liked i before t and whose pro-
files i has not yet seen).

The sequence of events, summarized in Figure 1, can
be described as follows. In each time period t€ 7,
users can log in and use the platform, in which case we

say that they are active in that period. Let Y} denote the

Figure 1. Time Line of the Within-Period Dynamics of the Model

Platform chooses

Users who logged in evaluate

random variable representing whether user i is active
in period t. We assume that Y follows a Bernoulli dis-
tribution with an exogenous time-dependent parame-
ter vi. We assume that these variables are independent
across users and periods and that the parameters v!
can be estimated accurately by the platform for every
user i € 7 and every period t € 7.

In every period and for each user, the platform selects
a limited number of profiles—an assortment—taken from
the user’s set of potentials. Let S} C ! be the assortment
selected by the platform to be offered to user i in period
t. If user i logs in during period t, user i observes the
assortment previously chosen by the platform, Sﬁ, and
decides whether to like/not like each profile j € S!. Based
on the resulting evaluations and before the period ends,
the platform (i) computes the new resulting matches
and notifies the corresponding users; (ii) for each user i,
it updates the backlog by adding those users who i has
not yet seen and who liked i in this period, and (iii) fol-
lowing the constraint that a user can see each profile at
most once, it updates the potentials and backlogs of the
users who logged in by removing the profiles seen by
those users in this period.

We assume that user i makes the like /not like deci-
sion for each user j in the assortment based on the
(random) utility that user i gets from matching with
user j in period t, Uj. This utility will naturally
depend on the time-invariant characteristics of users i
and j, which we denote by X;;. Additionally, a novel
component of our model is that we allow Uy to
depend on user i’s past experience on the platform;
this is consistent with the behavioral observation that
the history of interactions can affect the way in which
choices are made (e.g., McAlister 1982). For concrete-
ness, we assume that the utility depends on M}, which
is defined as the number of matches obtained by user
i since the last session before period f; in general, M!
can be defined using any measure of previous activ-
ities.® Examples of such a dependence might include
that a user who got more recent matches might
become more picky when evaluating the new assort-
ment as the user may have less bandwidth to pursue
new conversations or may be more optimistic about
the prospect of landing a date soon.

Based on the previous discussion, we assume that
Uj; depends on the characteristics of users i and j, i’s

Potentials, backlogs,

assortment for each user Users profiles in assortment and matches
log in are updated
| | | L
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number of matches since the last session, and a ran-
dom error. Hence, we write it as’ Uy = U(Xij,Mf).
Then, user i decides to like j in period t if and only if
U(Xij,Mf) > uj0, where ug is user i’s outside option. In
Section 4, we provide an expression for U(X,;,Mf-),
which will be validated using our partner’s data.

Let (i)f = {(I)f]. :j€TI} denote the vector of random
variables representing whether user i liked each pro-
file in period f (i.e., (I)f-j =1 if i likes j in period t and 0
otherwise). Following common practice, users can
evaluate only profiles displayed to them (i.e., i may
like user j in period t only if i logs in during t and j is
in i’s assortment; that is, j € Sf). Thus, we assume that

ifY!=0orjeSs,
otherwise,

0
P
i = {1W-P- ({bz](Mf)

where we define ¢,(M) to be the probability that user

i likes j conditional on logging in, observing an assort-
ment containing j, and having received M matches
since the last session: that is,

Oy (M) = P(Uy > 1o Xy, j € S, M= M, Y[ =1). (1)

We assume that the function ¢,,(-) can be estimated by

the platform for each pair (i,j) € Z X Z. This assump-
tion is standard in the literature, and it is likely to
hold in practice as platforms collect large volumes of
data that allow them to estimate these functions very
accurately.

Finally, we make the following assumption that we
keep throughout the rest of the section.

Assumption 1. For all (i,f) € Z X T and for any two peri-
ods t,t' € T, the decisions (I)f-]- and <I)]tl are independent con-
ditional on the vector of time-invariant characteristics X;;,
the assortments Sf,S;/, and the corresponding number of

matches M and M} .

Assumption 1 is likely to hold in practice, as users
cannot signal their decisions, and thus, they do not
know whether they have already been evaluated by
the other user. When estimating the like probabilities
in Section 4, we relax Assumption 1 to allow for user
time-specific unobservables.

A match between users i and j takes place if both
users like each other at some point during the entire
time horizon. Recall that users need not see each other
simultaneously (i.e., user i may see j in one period,
and j may see i several periods after that). Moreover,
users can see each other’s profile at most once. Let yf.j

be the random variable denoting whether a match
between users i and j takes place in period t. To ease

exposition, define <I>?i =1 for every j € % (ie., every j

in 7’s initial backlog). Then, a match between users i
and j takes place in period t if and only if one of the
following disjoint events occurs:

{tl)fj =1and (Iljt-i =1} or U7<t{(l)fj =1and

®;; =1} or Ur{®j; =1 and (I)][.i =1}.

The first event corresponds to users i and j liking each
other in period t. The second event implies that user i
likes j in period t and that j liked 7 in some prior
period 7 <t. The third event captures the opposite
case. Then, the number of matches obtained by user i
in period t + 1 since the last session can be expressed
as Mi{*' = Sjeruf+ (1= 17) - Mj.

An instance of the problem, which we name the
dynamic two-sided assortment problem, can be fully
described in terms of the set of users Z, the initial sets of
potentials and backlogs {#}},c; and {#!},.;, the like
probability functions {Qbij(‘)}z‘ez, jez, and the log-in proba-

bilities {v}};c7 ;7. The objective of the platform is to
design a dynamic algorithm that selects a feasible assort-
ment to show to each user in each period in order to max-
imize the total expected number of matches throughout
the entire horizon. An algorithm 7 for the dynamic two-
sided assortment problem describes a (possibly random-
St

ized) sequence of assortments {S }tT_l = {{Sf-’7T }z‘ez}tT:1 to
show to each user in each period, where the choice of
assortments for period t may depend on the past history
of the system (including which users logged in, the
assortments that were shown, and the resulting like /not
like decisions) up to the start of period t.

Following our partner’s practice, we assume that the
assortments must satisfy additional business constraints
that may depend on the history of the system; we
describe these in more detail in Section 5.1. Formally, let
S(H') denote the space of feasible assortments at time ¢
given the history of the system up to the beginning of
period f, H'. When it is clear from the context, we will
remove the dependence from the history and use S' to
refer to the set of feasible assortments in period . We
denote by IT the set of all admissible algorithms. The
platform’s objective is to maximize the total expected
number of successful matches over the time horizon,

supE

nell

55 5 o

teT i€l jel:j<i

where the expectation is taken with respect to log-in
realizations, like decisions, and possibly random selec-
tions of the algorithm if the latter is not deterministic.
It is worth noting that this problem could be mod-
eled as a Markov decision problem, where the state
space is given by the set of potentials, the backlogs,
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and the number of matches since the last session for
each user.? However, as described in Section 5, our
focus is on designing algorithms that can be easily
implemented by our industry partner and that run rel-
atively fast.

To conclude this section, we note that our problem
departs from other well-studied dynamic matching
problems in several meaningful ways. First, in contrast
to traditional online matching problems, users remain
in the platform and interact with each other through-
out the entire time horizon. Hence, our problem does
not consider uncertainty over future arrivals. Second,
in our setting, users get an assortment in each period
they log in and make like/not like decisions in all such
periods. Thus, the dynamics described the result in
users matching multiple times, unlike in many match-
ing problems where users can be matched at most a
fixed number of times. Third, current-period decisions
depend on a user’s own past decisions and crucially,
on other users’ past decisions, as they are a function of
the number of matches obtained by a user since their
last log in and users can be matched with others
sequentially. This introduces complicated market-level
dynamics that are typically absent in other matching
settings.

4. Estimation

To understand how users make their decisions and
design our algorithms accordingly, we estimate the
like probability functions ¢,(-) introduced in Section 3,
which depend on detailed pairwise characteristics of
the users. One challenge in the estimation is to recover
the causal effect of the number of recent matches on
the user’s (current) like decision without bias, as both
the number of matches and the like decisions may be
correlated with unobserved user characteristics. We
use a quasiexperimental design to address this chal-
lenge and construct an estimator for the history effect.
We provide the details of the estimation strategy in
Section 4.1 and the results in Section 4.2.

Before describing our estimation procedure, we note
two special features about our empirical setting. First,
we use the data described in Section 2.2 as well as
knowledge about our partner’s algorithm to estimate
the history effect without bias. In particular, we have
complete knowledge about the set of user characteris-
tics that the platform uses to make the assortment deci-
sions; in all subsequent estimation results, we control
for these characteristics. Second, we focus our analysis
on heterosexual users (i.e., users who declared a gender
and who are only interested in users of the opposite
gender, as such users represent 93.7% of the total num-
ber of users in the markets where we conduct our anal-
ysis). Thus, in the rest of this section, we assume that
the market has two different sides (one per gender).”

4.1. Like Probability Estimation

As discussed in Section 3, we assume that user i decides
whether to like or not like user j based on the utility
U = U(X;,M}) that i derives from getting matched
with j in period t. This utility is not directly observed,
and thus, it must be estimated from the data. In particu-
lar, we model Uy as

U = X + My + & + €, 3

where X;;and M are as defined in Section 3 (i.e., M rep-
resents the number of matches obtained by i since the
last session, and Xj encodes a set of time-invariant
observable characteristics of users i and j that includes
three groups of covariates). First, we include time-
invariant characteristics of users i and j, including their
height, race, etc. Second, we include measures of the
absolute and relative attractiveness of users i and j,
namely their attractiveness score (ratio of likes to evalua-
tions received during their time on the platform) and
their quintile of attractiveness compared with all users
of the same gender. Lastly, we include the interactions
between the characteristics of users i and j (e.g., user i
might be looking for partners from the same religion or
age group). Following Hitsch et al. (2010a), for each
numerical variable x; included in Xj;, we include the
squared positive and negative differences, |xj — xi|%
and |x; — x%|2, and for each categorical variable d) and
each pair of values /,I" included in Xj;;, we include the
interaction 1{dy =1, dy =1}. The rich set of user i's
and wuser j's characteristics and their interactions
included in the utility function allow the like probabil-
ities to be ij specific, which we incorporate into our algo-
rithms to generate personalized assortments. The term
& are unobserved user time-specific characteristics,
which can include how many people the user is cur-
rently dating, whether there is someone to whom the
user feels especially connected, and whether the user
has had positive or negative dating experiences in the
recent past, among other unobservable features that
may affect the user’s decision. Finally, €;; are independ-
ent and identically distributed error terms that follow an
extreme value distribution.

We first estimate the like probabilities using panel
logit regressions, including user and time fixed effects.
The results are presented in the online appendix. We
observe that the number of matches in the recent past
has a negative and significant effect on the like proba-
bilities. This provides suggestive evidence supporting
the existence of the history effect.

4.1.1. Challenge in Estimation. Although the fixed effect
regressions account for user-specific and time-specific
unobservables, they potentially omit endogeneity issues
caused by the user time-specific unobservables &, which
can lead to biased estimates. As previously discussed, &
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captures user time-specific unobservables, such as user
i’s recent dating experiences both on and outside the
platform, which are potentially correlated with the num-
ber of matches user i obtained since the last session, Mf
These user time-specific unobservables may also affect
i’s willingness to like or not like the profiles seen in
period t. For example, if user i had a positive dating
experience outside the platform in the recent past, user i
might have become pickier when evaluating profiles on
the platform in recent periods, which may have led to
fewer matches since the last session at the beginning of
period t, M!. This effect and the picky attitude could last
for more than one period, and user i might also like
fewer profiles shown in period t. As a result, directly
estimating Equation (3) would underestimate the mag-
nitude of the history effect because & is positively corre-
lated with M. In other words, M! is endogenous.

Estimating the history effect without bias in the dat-
ing market is particularly challenging. In an ideal
world, one could run an experiment that randomly
assigns users to treatment and control groups, where
users in the treatment group would receive extra
matches compared with those in the control group.
Then, comparing between the treatment and control
groups in terms of the like decisions of the users in the
following session, one would be able to measure the
history effect. Unfortunately, one cannot implement
this randomized experiment in a dating market, as
users must like each other to generate a match. Thus,
to generate matches for a user, one would need to
manipulate the like decisions of other users, which is
unfeasible to implement in practice. Moreover, chang-
ing the like decisions of those users might introduce
interference in the randomized experimental design:
some of these users might be in the control group,
changing these users’ like decisions about the treated
users might affect their like decisions about other users
in the control group, etc. This is a particularly challeng-
ing problem, and to the best of our knowledge, it has
not been studied much in the literature.

To address this challenge, we utilize a quasiexperi-
ment generated by a change in the platform’s algorithm
that exogenously changed the probability of getting new
matches for some users and that had a limited impact
on other users. We use this quasiexperiment to estimate
the causal effect of an extra match on users’ subsequent
like decisions. Our analysis also provides an important
example that shows that, although randomized exper-
iments and quasiexperiments in general suffer from
interferences in two-sided market settings, properly de-
signed experiments can still be used to estimate treat-
ment effect without bias.

4.1.2. Quasiexperiment. Aswe discussed in Section 2.1,
backlog queries are particularly important for generat-
ing matches. Most users get up to three backlog queries

each day depending on the size and composition of their
backlog. Our partner’s algorithm ranks backlog profiles
in terms of the attractiveness score and uses this metric
to decide which backlog profiles to show (in decreasing
order of score). Before May 17, 2019, backlog profiles eli-
gible to be shown only included active users (i.e., users
whose last log in was within 45 days of the creation of
the assortment). We also use active to refer to users who
log in in the model. Starting on May 17, 2019, this con-
straint was removed, and so, many inactive users in the
backlogs became eligible to be shown.

As a result, some users whose backlog contained
inactive profiles experienced a change in the assort-
ment and possibly, in the number of backlog queries
they received. This occurred when either (i) the user
had no active backlog profiles with high-enough prior-
ity (relative to other business constraints) to be shown
but had an inactive backlog profile that was now eligi-
ble to be shown or (ii) the attractiveness of any of those
inactive backlog profiles was above the attractiveness
of the active backlog queries that would have been
shown before the change in the algorithm. This change,
in turn, increased those users’ probability of getting
new matches instantaneously (and thus, before their
next session) if they liked any of those inactive backlog
queries. For some users, however, although they had
inactive profiles in their backlog after the change in the
algorithm, they did not receive them in their assort-
ments as those inactive backlog profiles remained
ineligible to be shown because of other reasons. Impor-
tantly, as we will later explain in detail, some of the
reasons for the ineligibility are uncorrelated with the
focal users’ characteristics or behavior on and outside
the platform. We use the change in the algorithm and
the eligibility of the inactive backlog profiles as a qua-
siexperiment to estimate the history effect. Notice that,
as the additional matches are formed with inactive
users, they do not introduce interference with the other
active users in the market in a short period of time.
This is key in our quasiexperimental design.

Next, we describe the quasiexperiment in detail.
The time line of the quasiexperiment is as follows (see
Figure 2). Let ! be the last time user i logged in to see a
new assortment before the change in the algorithm on
May 17, which is the pretreatment period. ! and #? are
the first and second times user i logged in to see a new
assortment after the change in the algorithm, respec-
tively. In other words, #! is the treatment period, and t?
is the posttreatment period where the outcome is
measured. To avoid potential interference in the qua-
siexperiment, we restrict the analysis to a short time
window around the change in the algorithm on May
17. Specifically, we consider no more than three days
around #! to estimate the history effect without bias
and in particular, to avoid the interference from the



Rios, Saban, and Zheng: /mproving Match Rates in Dating Markets

Manufacturing & Service Operations Management, Articles in Advance, pp. 1-20, © 2022 INFORMS 9

Figure 2. Time Line of the Quasiexperiment

Last Session
before Change in Algorithm
(i.e., before May 17)

First Session
after Change in Algorithm

First Session
after Shock in Matches
(i.e., after t*)

l (i.e., after May 17) l

tO

other users responding to the change in the focal users’
like decisions in the quasiexperiment.'® As t! is either
May 17 or May 18 for most users, we add the con-
straints that £ is no sooner than May 14 and that #? is
no later than May 21. As the variation in ¢, 7 € {0,1,2}
across users is small, we drop the subscript i for brev-
ity, and we exclude from the analysis all users who
were not active in at least one of the three periods
{t°,#1,#2}. We also restrict our sample to users who did
not change their preferences, relationship status, or
geographic region (as described in Section 2) three
months prior to t°.

We define the treated users as those who were shown
at least one inactive backlog profile in period t'. Recall
that our partner’s algorithm ranks each user’s backlog
profiles in terms of the attractiveness score and only
uses this metric to select (up to) the top three backlog
profiles to show for most users. Some treated users
were shown more backlog profiles than they would
have seen before the change in the algorithm (includ-
ing those that had no active users in their backlogs).
For those treated users who would have seen backlog
profiles with no change in the algorithm, these inactive
backlog profiles may be more attractive than some of
the backlog profiles they would have seen. These two
elements combined increased the treated users’ proba-
bility of getting new matches as liking these additional
inactive backlog queries instantaneously generates a
match.

We define the set of users in the control group as
those whose observed characteristics and attractive-
ness scores from active and inactive users in their
backlog are similar to those of the treated users but
who were not shown any inactive backlog profiles in
period ' because the inactive backlog profiles were
not eligible to be shown because the (inactive) users
(1) disabled their profiles on the platform, (2) changed
their relationship status to “not single,” (3) changed
their preferences, or (4) moved to a different region.
We emphasize that these reasons are all uncorrelated
with the unobserved characteristics or dating activ-
ities of the focal user, captured by &; in the model.
Moreover, we have access through our partner to all
inactive backlog profiles, their eligibility to be shown,
and the reason for their ineligibility. In other words,
the control group users satisfy the following four
conditions.

t2

I. The user had inactive backlog profiles after the
change in the algorithm.

II. The user’s characteristics and the number and
attractiveness of the active and inactive backlog profiles
are similar to those in the treatment group.

III. The user was not shown any inactive backlog
profiles in period t'.

IV. At least one of the inactive backlog profiles is
more attractive than the least attractive active backlog
profile that would have been shown in period # (if
any) and is ineligible to be shown for one of the four
reasons listed.

The first two conditions ensure that the control
group users are similar to those in the treatment group
in terms of their characteristics and the composition
and attractiveness of their backlogs. The last two con-
ditions establish that the user had inactive backlog pro-
files in period ' but was not shown any because of the
ineligibility of these inactive profiles because of the
exogenous reasons listed. Thus, the probability of get-
ting a match in t' is not affected by the change in the
algorithm for these users for reasons uncorrelated with
the unobserved characteristics or dating activities of
these users. Conditions I and III are straightforward to
implement. For II, we first estimate the users” propen-
sity to be treated as a function of the full set of user
characteristics and the number and attractiveness dis-
tribution measures (mean, standard deviation, min,
max) of both their active and inactive backlog profiles.
Then, we use the estimated propensity scores (PSs) to
construct weights or matches in our analysis to balance
the treatment and control groups. That is, conditional
on the propensity score or the observables of each user,
whether the user is in the treatment or control group is
determined by whether an inactive backlog profile
happens to be eligible to be shown after the change
in the algorithm. We note that condition IV implies
that there might be potential differences in the attrac-
tiveness scores between the backlog queries of the
treatment and control users. Thus, we control for the
attractiveness score of every profile shown to all users
in the analysis.

Compared with the control users, the treated users
have a higher probability of obtaining matches in
period t'. Moreover, because the treated users’ addi-
tional matches are with inactive users and the active/
inactive state of their matches remains unknown in a
short period of time, the impact of these “inactive”
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matches on the treated users’ subsequent like decisions
is the same as that of the matches with active users. In
the online appendix, we provide statistics on the
amount of time between when a match is formed and
the completion of one round of messaging between the
users (one message from each user) and show that
users could not tell the difference between an active
and an inactive match within three days of obtaining
the match. Using the inactive matches and a short time
window helps us avoid the interference common to
experimental designs in our two-sided market setting.

4.1.3. Estimation Procedure. Our estimation proce-
dure includes three steps. First, based on users” observed
characteristics and usage metrics from the pretreatment
period t°, we estimate the propensity that users are
treated in the quasiexperiment. Using the estimated pro-
pensity scores, we construct weights to be applied in the
second and third steps of the estimation. The second and
third steps are similar to the standard two-stage least
squares (2SLS) method. In the second step, we use the
treatment indicator as an instrumental variable for the
number of matches that users receive between periods t'
and #*. In the third step, we estimate the impact of the
estimated number of matches on the like probabilities in
period #.'" Next, we describe the details of the three-
step estimation procedure.

4.1.3.1. Step 1. PS Estimation. Using data from pe-
riod t°, we estimate a logistic model for the following
specification: ei(Xi,Mf»]) = XiB, + )/Mf-1 +¢;, where ¢; is
the propensity score of user i. In other words, ¢;(X;,
M) = Pr(W; = 1]X;,M!"), where W; is the binary treat-
ment indicator. X; is a matrix of pretreatment charac-
teristics of user i that includes age, height, education,
race, region, attractiveness score, quintile of attractive-
ness, number of backlog profiles shown to the user
observed in period t°, number of profiles liked by i in
period t°, number of active and inactive profiles in i's
backlog in period t, and summary statistics of the dis-
tribution of both active and inactive backlog profiles’
attractiveness scores, including the mean, standard
deviation, minimum, and maximum. We provide a
detailed description of the full set of variables in

the online appendix. M! represents the number of
matches obtained by user i since the last session in
the pretreatment period (i.e., between t° and t'). Using
the estimated coefficients, for each user we compute
the estimated propensity score, which we denote by
¢;. Finally, to increase the degree of overlap between
the distributions of propensity scores of the two
groups, we conduct symmetric trimming of &; at the
10% level (see the online appendix).

4.1.3.2. Step 2: First-Stage Regression of 2SLS.
Following Hirano et al. (2003), we compute weights w;
using the estimated propensity scores ¢;: that is,

w; = =
(Za-w,-)).a—éi)l /> =) i w=o.
7 =0

Using these weights, we estimate the following model:
Mfz = OW; + X;B, + Zflél + ¢;, where Mfz represents the
number of matches obtained by user i between periods
t' and * and Z!' is a matrix of observed characteristics
of the profiles viewed by user i in period #', including
their average age, height, education, attractiveness
score, and the fraction of profiles in the assortment that
share the same race and religion with the user. We also
control for the same covariates used in the propensity
score estimation. Using the estimated parameters from
this model, we compute the predicted number of
matches since the last session before #* for each user i

A2
(e, M, ).

4.1.3.3. Step 3: Second-Stage Regression of 2SLS.
Using the estimated weights in step 1, we estimate

the following model: qbf]z = P()/]\A/If‘2 + X, + Zf.l Sy +
&), where qbf]z is the probability that user i liked j in
period t?, P(-) is a cumulative distribution function,
Xjj is as previously defined in Section 4.1, and 7! s
the matrix of characteristics of the assortment
observed in period t'. In an alternative specification,

we also control for quality of matches obtained since
the last session.

4.2. Estimation Results

As a result of our treatment and control definitions, our
quasiexperiment consists of 8,398 control and 6,412
treated users. In the online appendix, we report the
results of the propensity score estimation, and we also
include an extensive set of statistics about the users’
characteristics and activity measures for the treated and
control groups after propensity score weighting. We
find that there is no statistically significant difference
between the two groups across all these statistics.

In Table 1, we report the first-stage results of 25LS
estimated using an ordinary least squares regression
and a negative binomial regression. We include the lat-
ter because the dependent variable takes discrete val-
ues. We observe that, in both models, the coefficient of
the treatment variable is positive and significant, which
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Table 1. Quasiexperiment Estimation Results

OLS Negative binomial
First stage
Treated 0.228* 0.555
(0.011) (0.027)
SecAopd stage
; —0.423* —0.222"
(0.147) (0.112)
Constant —3.020" —2.961"
(1.148) (1.141)
Observations 51,561 50,533
Pseudo-R* 0.323 0.322

Notes. The first stage is estimated using ordinary least squares (OLS)
and negative binomial regressions. The second stage for the negative
binomial first-stage regressions addresses the forbidden regression
problem. Standard errors are clustered at the user level. Significance
is reported with asterisks.

*p < 0.05; **p < 0.01.

confirms that our instrument satisfies the relevance con-
dition. Moreover, we observe that the estimated mar-
ginal effects are very similar, which suggests that the
choice of the first-stage model does not play an impor-
tant role. In Table 1, we also present the second-stage
results of the 25LS procedure as described in step 3. We
address the forbidden regression problem of the nega-
tive binomial first-stage following Angrist and Pischke
(2008).

We observe that the coefficient corresponding to

~ 12

M, is negative and statistically significant for both

1
specifications. We calculate the average marginal

2

effect of Mf and find that an extra match in period t!
reduces the like probability in period #* by 3.2%6.3%.
These results provide an estimate of the history effect
and of the utility function, which we will use as an
input for our proposed algorithm in the simulations
and in the field experiment. In the online appendix,
we show that these results are robust to controlling
for the attractiveness of the matches obtained since
the last session. More specifically, we control for the
mean, the standard deviation, the minimum, and the
maximum attractiveness scores of the matches
received since the last session. We also control for the
positive and negative differences relative to the score
of the focal user. In all alternative specifications, we
find that the estimated history effect is larger in mag-
nitude than those reported in Table 1 (i.e., these
results provide a conservative measure on the magni-
tude of the history effect).

5. Heuristics
The goal of this section is to introduce a family of
algorithms that leverage the main findings from our

empirical analysis in Section 4. To this end, we start in
Section 5.1 by describing the set of business require-
ments that define a feasible assortment. In Section 5.2,
we provide an upper bound for the optimal value of
the platform’s problem in (2), and in Section 5.3, we
present a family of heuristics that can be parametrized
via a market-level penalty function.

5.1. Incorporating Business Constraints
Following our partner’s practice, we limit the number
of potential partners that a user can see on each given
day by restricting the assortments to be of (at most) a
fixed size (i.e., |S!| <K! for some K! < |Z|). In addi-
tion, we require that each user sees a potential partner
at most once (i.e., S; N'S; =0 for every user i € 7 and
every two periods 7,t € T, T < t). Moreover, users are
not allowed to see profiles of users who have rejected
them in the past.

To express these constraints, we use the notation
introduced in Section 3. We can write the last two con-
straints simply as S} C 2!, where we assume that the
set of potentials #! is updated every period by remov-
ing both the profiles that were shown to the user in
the last period (if any) and also, all users who disliked
user 7 in the last period.

Finally, our partner also imposes additional con-
straints on which profiles can be part of an assortment.
These constraints are “minimum requirement” (cover-
ing) constraints, and examples include (1) if a user’s
backlog is not empty, show at least one profile from
the backlog, (2) a minimum number of profiles with
some level of attractiveness should be included, etc.
Importantly, these constraints are assigned an order,
and they need to be satisfied in that order. We refer
to these constraints collectively as business constraints.
In Section 5.3, we provide more details on how to
incorporate these constraints into the solution of our
problem.

5.2. An Upper Bound on the Expected Number
of Matches

A major implication of our empirical findings is that the
probability that each user 7 likes a profile j is upper
bounded by the like probability when user i has no
matches in the recent past (i.e., (ﬁij(M) < qbij(O)). To ease
notation, throughout the rest of the paper we use (1)2. to
denote ¢,,(0).

Following this observation, we propose the fol-
lowing linear program that, as we establish in Prop-
osition 1, can be used to obtain an upper bound for
the platform’s problem in (2) and that also plays a
fundamental role in constructing our heuristics in
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Section 5.3:
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The decision variables xj; and yj; may be interpreted as
follows. yf-]- represents the probability that  is included in
i’s assortment as a backlog query (i.e., j has previously
seen and liked 7). By contrast, xfj is the probability that j is
included in i’s assortment as a nonbacklog query (ie., i
has not been evaluated by j yet). In addition, zfj represents
the probability that users i and j see each other simultane-
ously in period t. The first constraint captures the defini-
tion of yf-]. and the evolution of the (expected) backlog.

Specifically, for any period f, the term ./} yj; - vi denotes
the probability that i saw j as part of a backlog query in
the past, and the term X/7} (x; —vizj) - v} - qb](: denotes
the probability that j liked 7 in some prior period 7 < t
without j being shown to i in the same period 7. Hence, if
j is not in the backlog of 7 at the beginning of the horizon,
the probability that j is included in the assortment of user
iin period t as a backlog query is limited by the probabil-
ity that j sees and likes i prior to t and that i has not seen
j before period t. On the other hand, if j € %/, then yf-j
may take a value equal to one starting from the first
period. The second constraint guarantees that each pro-
file is seen at most once throughout the entire horizon in
expectation. The third constraint ensures that at most K!
profiles are shown in expectation to each user in the cor-
responding period. The next constraints define the varia-
ble z; and ensure that x; and y; are valid probabilities.

In a slight abuse of notation, we denote by S* the poly-
tope defined by all constraints in (4) given the initial state

of the system, which can be fully described in terms
of the initial sets of potentials {#}},.7, the initial back-
logs {#}},c;, the horizon 7, the log-in probabilities
{v}iez tej7), and the like probabilities {qbg,}l-/]-ez.

Proposition 1. Let ©* be the optimal value of the plat-
form’s problem introduced in (2), and let 7t be an optimal
solution to (4). Then, 7" < 1.

We conclude by noting that this upper bound is not
likely to be tight, as it does not take into account either
the business constraints or the history effect.

5.3. The Dating Heuristics

Our finding that the like probabilities depend on the
number of recent matches introduces significant chal-
lenges from an optimization perspective. Typically, one
would like to treat the like probabilities as (time-invari-
ant) parameters to our algorithm; however, because of
the history effect, these are endogenous to the choice of
the algorithm. Specifically, the algorithm decides the
assortments for today, which have an effect on the likes
and thus, the matches formed today, which in turn,
affect the like probabilities tomorrow. To address this
challenge, we next present a family of algorithms called
DH, which take into account the effect that the assort-
ments chosen in the current period will generate in the
future. Each algorithm is defined by a penalty function
that aims to capture this effect, and as described in Algo-
rithm 1, each algorithm works in two steps: (i) optimiza-
tion, and (ii) rounding.

5.3.1. Optimization. The first step is to solve an optimi-
zation problem similar to that in (4), but we modify it in
four important ways. First, we consider as input the
realized state of the system up to the beginning of
period t, which can be fully described in terms of the
set of potentials {#!},.;, the backlogs {#'},.;, the num-
ber of matches {M!},.;, the log-in probabilities {v'};.7,
and the like probabilities {(j)f.].iezwﬁ }, where ¢ = ¢, (M)).

Second, instead of considering the full horizon, we con-
sider only one period of look ahead (ie., T € {t,f +1}).
We denote by S' the polytope resulting from these
changes. Third, we update the objective function by
incorporating a penalty in order to account for the effect
that the initial number of matches together with the
decisions in these periods can have in future ones.
Although our main focus moving forward will be to
design this penalty function to capture the history
effect, it is worth highlighting that this penalty can also
be used to capture other considerations that may impact
future matches, such as exhausting all good options for
a picky user. Finally, we also include the business con-
straints to satisfy the requirements of our industry part-
ner. Recall from our earlier discussion in Section 5.1
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that the business constraints are of the form such that
“a minimum number of profiles satisfying criteria X
should be included if possible” and that these con-
straints must be satisfied (if possible) in some pre-
defined order. We denote the ordered set of business
constraints by £={1,...,L} and observe that, in each
period t, business constraint [ can be expressed as Zjeg}z
xfj-af,]ff+yfj i 7 > b, where ”z,z €{0,1},a% €{0,1}, and
bl € Ny are constants that may depend on the state of the
system, namely the sets of potentials and the backlogs
in period t (ie., {#! %},c;). Importantly, only con-
straints that can be satisfied will be added to the formu-
lation (e.g., if a user has an empty backlog, no constraint

on their backlog will be added). The resulting optimiza-
tion problem can be found in (5) in Algorithm 1.

ijl

5.3.2. Rounding. After solving the optimization prob-
lem described, we obtain a solution (x*,y*,z*) that may
be fractional. Hence, to decide the assortments to show
in period ¢, the second step in Algorithm 1 is to round
the solution obtained for the first period in the horizon
(i-e., x*,y*"). To do so, we construct feasible solutions
by satisfying the business constraints sequentially in
the order that mimics the one followed by our industry
partner. We first include backlog profiles in decreasing
order of yj; ! followed by profiles in decreasing order of
X " until the first business constraint is satisfied or the
assortment is full. We then proceed to the second con-
straint and so on. After all the constraints are satisfied,
we complete the assortment by including profiles in
decreasing order of yj; !, and if there is space left in the
assortment, we add proflles in decreasing order of x
Observe that this rounding technique will pr10r1t1ze
showing backlog profiles."?

Algorithm 1 (DH)
Input: 2}, %], M, Uu(P,] for each user i€Z,je
and £ <0
Output: An assortment S for each user i € 7
Step 1. Optimization. Solve
w7
t+1

PIDIT RN

7=t i€l ]E/f

- St
)

= argmax
XY,z

U v (Pz] (P]I z]

1=t =t b S Ll Sl of
+¥Y*\x,y,z,x ,y ,z M
T T,X T Ty
s.t. inj'aijl Y- ag = by,
j€?;
VieZ te{tt+1},1€L,
(v, y,2) e S". (5)

Keep (x*!,y*"), discard the rest of the solution, and
redefine x* = x*,y* =y
Step 2. Rounding. For eachi€ 7, set S! = 0.
Forl= L
If constralnt l is not satisfied by S:
Let P/ (1) be the subset of potentlals for which
Ul =1, yl]>0and]e£St
Define .7”‘(1) as the subset of potentials for which
a; =1,x;>0andjeS; U @ty(l)
Greedily add profiles in #/¥(l) in decreasing
order of y;; to S! until the constraint is satisfied;

If no profiles are left in 2 (1) and the constraint
is still not satisfied:
Greedily add profiles in 2/*(I) in decreasing
order of Xj; until the constraint is satisfied.

If |S!| < K, complete the assortment by adding profiles
in decreasing order of yj; (not included thus far), and

if there is still space, add profiles in decreasing order
of xj; that have not been included so far.

5.3.3. Penalty. To decide which assortments to show
in period t, our heuristic uses a penalty function that
accounts for the negative effect that the matches in
each period 7 €{f,t+1} have in future periods. As
matches today affect matches tomorrow through the
like probabilities, our penalty function uses a first-
order approximation to capture the effect that
matches in each period will have on individual like
probabilities in future periods. We now provide an
informal discussion to motivate our choice of pen-
alty function.

First, the number of matches generated in each
period depends on the state of the system and on the
assortment decisions in that period. Therefore, for the
optimization problem in Algorithm 1 to remain linear,
the penalty function W(-) must be a linear function of
these decision variables. To accomplish this, we use
the idea behind a first-order Taylor expansion to
approximate the change in the like probabilities (i.e.,
for any two values of matches since the last session
MF and M,

Gy(MP™Y) = oM7) ~ (M = M{) -y, (M), (6)

where )/i].(MiT) is the local marginal effect of an extra

match on the probability that user 7 likes profile j when
the former has M} matches). If instead of using the
local marginal effect, we use the average marginal
effect y, the expected change in the like probabilities in
period t + 1, conditional on the decisions made and the
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state of the system up to period t, can be approximated
by

sl (Mi7) -0, 00) 5"} M

fhpr

where the expectations are taken over the users” deci-
sions in period t given the algorithm’s (probability
over) decisions in t and the number of matches by t.
Observe that

[ 2
{ X,y z}MYH
1{2@;%ﬂ4%-;a+§¢¢gﬂ

jeZ!

{ ,y z },]Y/It]—Mﬁ)i/,

|:Mt+1

E[}E[Mf“

uu@@ﬁzwﬁﬁﬂ
ieT

where qbf] = cp,,].(Mf). The second equality is obtained as
follows. The first term corresponds to the case where
user i logs in in period t. Then, the matches since the last
session for period t + 1, M!*!, are only those formed in
period t; these matches can be obtained by one of the
three ways described. By contrast, if i does not log in
(second term), then the number of matches in t + 1 will
be the ones at the beginning of period t, M, plus those
obtained in period t. Note that the latter can be obtained
only when another user j, who was previously liked by
i, logs in and likes 7 back in period ¢. Therefore, we define
the penalty function for period t as

M
=

_t
W Zt},Ml -M

-
HY

((Pf]yf]-"-v 1] d)]; 1]) ZU (P]z y]l]

je!
1

S R
j€T

Using a similar reasoning, we define

t 41 1

ot
‘I’”l( ,y zZ,%x .,y ,ZHl,M)

H'rlﬁﬂrlﬁf ,Mt
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Finally, notice that we use & as an input to our algo-
rithm. By multiplying the penalty by &, this input
allows us to control the relative magnitude of the
penalty.

6. Simulations

In this section, we numerically evaluate the perform-
ance of our algorithm and compare it against relevant
benchmarks.

6.1. Data and Simulation Setting

We use a data set similar to that described in Section 4,
which includes all heterosexual users in Houston,
Texas who observed at least 100 profiles from their
potentials between September 1, 2019 and April 1,2020
and who logged in at least once between March 1 and
April 1, 2020. For each of these users, we assume that
their initial set of potentials is composed of the profiles
they saw between September 1, 2019 and April 1, 2020,
and we assume that they had no backlog or previous
matches. As a result, we end up with a market with
852 women and 865 men who have on average 180.28
and 167.01 potentials available, respectively. We also
ran simulations for different markets, including Austin
and Dallas; different initial conditions for the set of
potentials; the number of matches since the last ses-
sion, etc. The results are qualitatively similar to those
that will be reported next.

Having defined the market, we next define the like
and log-in probabilities. To compute the former, we
use real data on the characteristics of the users in the
sample, and we use the parameters reported in the
second column of Table 1 to compute the probabil-
ities. For the latter, we use for simplicity the observed
mean values of log-in rates in the sample, which are
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approximately 0.372 for women and 0.537 for men.
Finally, for each policy, we consider a fixed assort-
ment size of K = 3 for all users and a time horizon of a
week (i.e., T = 7), and we consider as business con-
straints the two most relevant ones according to our
industry partner. (We cannot disclose what these busi-
ness constraints are because of the terms in our Non-
Disclosure Agreement (NDA).)

Each simulation can be summarized as follows. In
each period, we start by choosing the assortments that
will be shown to each user who logs in. Then, the sub-
set of users who are active in that period is realized,
and each of these users makes like/not like decisions
about the profiles shown in their assortment. Based on
these decisions, we compute the number of matches
generated, and we also update the sets of potentials
(by removing from each user i’s potentials all users j
who saw and disliked user i and also, the profiles
evaluated by i (if any) in that period), the backlogs (by
adding to each user i’s backlog all users j who saw
and liked user i and also, by removing the backlog
profiles evaluated by i (if any) in that period), and the
number of matches obtained since the last session for
each user. Finally, having updated the state of the sys-
tem, we proceed to the next period and repeat this
process until the end of the horizon.

6.2. Benchmarks
We compare the performance of DH against the fol-
lowing relevant benchmarks.

1. Partner. Implementation of our partner’s current
algorithm.

2. Naive. This benchmark selects, for each user i, the
assortment that maximizes the expected number of likes
in the current period without considering the probabil-
ity of being liked back, the log-in probabilities, and the
history effect on the like probabilities.

3. Greedy. This benchmark selects, for each user i,
the assortment that maximizes the expected number of

Figure 3. (Color online) Simulation Results

(a)

matches in the current period without considering the
history effect on the like probabilities. In other words, it
does not update the current-period like probabilities by
accounting for the matches obtained since the last ses-
sion, and it does not have a look-ahead period nor a
penalty.

For Naive, Partner, and Greedy, we consider a con-
straint on the number of times that each profile is
shown in a given period (equal to 10) and on the back-
log size of a user in order for the profile to be eligible
to be shown (equal to five). These values are the ones
leading to the maximum number of matches for these
policies (see the online appendix for further details).

6.3. Results

Our main simulation results are summarized in Figure 3.
Figure 3(a) reports the average number of matches
generated over 100 simulations by each policy, whereas
Figure 3(b) reports box plots with the improvement of
each heuristic relative to Partner and Greedy. In both
cases, we consider & = —0.05 for DH. We observe that
our heuristic considerably outperforms the other bench-
marks. Indeed, the improvement of DH is 42.30% rela-
tive to our partner’s algorithm and 13.52% relative to
Greedy. Moreover, the improvement of DH relative to
Partner and Greedy is always positive.'?

To identify the sources of improvement, we aim to
quantify how much is because of (1) finding better
matches (by using improved personalized estimates
for the like probabilities and explicitly accounting for
the probability that a profile is liked back) and (2) con-
sidering a penalty in the objective that accounts for the
history effect. In Figure 3(c), we plot the average num-
ber of matches obtained by Greedy and DH from 100
simulations (the same setup as before) for different val-
ues of &. In addition, we plot the results obtained by
DH if we do not take into account the history effect
(i.e., if we consider &=0 and (j)l.j = (pij(O) forall ieZ
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and j€#;). The idea of including this additional
benchmark, which we label as no history (NH), is to
separate the improvement because of better matches
from the improvement because of including the his-
tory effect.

First, we observe that our NH heuristic considerably
outperforms the Greedy policy. This improvement is
solely based on finding better matches by using the one-
period look-ahead policy, as in both cases, we do not
consider the history effect. In addition, we observe that
when & =0, the DH heuristic generates 718.15 matches
on average, which represents an improvement of 0.22%
relative to the NH heuristic (which generates 716.53
matches on average). This improvement is fully ex-
plained by taking into account the history effect in the
like probabilities (i.e., by using (j)ij(Mﬁ) instead of ¢(0)
in each period).14 Second, the improvement obtained
with a lower value of & relative to the case & =0 is the
result of including the penalty in the objective function
of our heuristic. When & = —0.15, the absolute improve-
ment is 5.76% (759.57 matches on average) relative to the
case & = 0. Overall, from these results, we conclude that
80% of the improvement (or roughly, 185 extra matches)
comes from finding better matches and that the remain-
ing 20% of the improvement is because of accounting for
the history effect.

Finally, an additional set of simulations reported in
the online appendix shows that the improvement ob-
tained by DH is also meaningful and stable over a longer
time horizon. We observe that DH aims to keep the like
rate stable (neutralize the history effect) by means of two
mechanisms: (1) saving backlog profiles when the num-
ber of matches since the last session increases and the
backlog size is not large and (2) showing more attractive
profiles as the number of matches since the last session
increases. These mechanisms explain the improvement
achieved by DH over NH.

7. Field Experiments

In this section, we describe the results of two field
experiments aiming to test if and how the improve-
ments of our proposed heuristics translate to practice.

7.1. Setup

A field experiment to measure the impact of our heu-
ristic would ideally assign identical markets to treat-
ment and control groups.'” The experimenter would
then offer assortments obtained with our proposed
algorithm to users in each of the treatment markets
while keeping the default algorithm in the control mar-
kets. Under such a field experiment, a simple compari-
son of the average number of matches generated in the
treatment and control markets would provide an esti-
mate of the causal effect of our proposed algorithm on
the number of matches. In practice, however, there are

no identical markets. As a result, we perform our field
experiments in similar markets using a difference-in-
differences (DID) design. The DID design allows us to
remove biases generated from the differences across
markets and across time periods if the parallel-trends
assumption is satisfied.

We considered the three largest markets in the state of
Texas, namely, Dallas—Fort Worth, Houston, and Austin,
and we randomly chose one of these markets—Houston
and Austin in the first and second field experiments,
respectively—to be assigned to the treatment group,
whereas the other two markets were assigned to the con-
trol group. We chose these three markets because of
their geographic proximity and their similarity in the
distribution of the main variables of interest. In the
online appendix, we show that there are no significant
differences in the main demographics across the three
markets. In the interest of space, in the next sections we
focus on the first field experiment, and we report the
results of the second field experiment in the online
appendix.

7.2. First Field Experiment

During the seven days between August 19 and August
25, 2020, the users in the treatment market (Houston)
received assortments chosen with our heuristic, whereas
the markets in the control group kept the default algo-
rithm provided by the platform. As an input for our heu-
ristic, we use the parameters in the first column of Table 1
to estimate the like probabilities. To predict the log-in
probabilities, we use the estimation result of a model
with user and time fixed effects and detailed activity
measures; we describe the model in detail in the online
appendix.’® As the estimates are very similar across
models, we believe that this choice does not affect the
results of the experiment. Recall that our algorithm still
needs to satisfy the business constraints imposed by our
industry partner (i.e., the algorithm will first satisfy the
business constraints, and if there is space remaining in
the assortment, it will select additional profiles to add).
As aresult, 38.30% of the profiles shown during the time
window of the experiment were chosen freely by DH.

7.2.1. Overview of Results. In Figure 4, we plot the
number of matches per day in Houston, Austin, and
Dallas-Fort Worth between August 12 and August 25,
2020. The vertical lines mark August 19, 2020, the day
when the experiment started in the treated market.
We observe that, starting from August 19, the number
of matches generated in the treated market consider-
ably increased relative to the previous days. In addi-
tion, we find that the increase in the number of
matches persisted on all days after the start of the
experiment. These results suggest that our algorithm
significantly increased the number of matches gener-
ated in Houston.
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Figure 4. (Color online) First Field Experiment: Number of Matches and Active Users

(a)
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Notes. The number of matches and the number of users who logged in between August 12 and August 25, 2020 are shown. The vertical lines
mark the day when the experiment started in the treated market (Houston). (a) Number of matches. (b) Number of users.

Table 2 summarizes these findings. The Before period
corresponds to the week of August 12-18, 2020 (before
the change in the algorithm), whereas the After period
corresponds to the week of August 19-25, 2020. The
Queries column includes the total number of profiles
that were shown in each market and time period; the
Likes column indicates how many of those profiles
were liked. Finally, the Matches column counts the
matches that were formed. We observe that the number
of queries remained approximately constant. However,
there is a significant increase in the number of matches
obtained in Houston during the After period. We will
formalize this finding in the next subsection. We con-
clude Section 7.2 by exploring what is driving the
increase in matches.

7.2.2. Estimation. To estimate the effect of our heuris-
tic, we follow a DID approach. Let W,,, = 1 if market m
received the treatment and W,, = 0 otherwise (i.e.,
W,, = 1 for Houston and W,, = 0 for Austin and
Dallas-Fort Worth). Let Z; = 1 if period t is after the
beginning of the experiment (i.e., t is August 19, 2020 or
later) and Z; = 0 otherwise. Finally, let M,,,; be the num-
ber of matches generated in market m in period t. Then,
the DID estimator can be obtained from estimating the

Table 2. First Field Experiment: Summary of Results

Market Period Queries Likes Matches
Austin After 27,633 11,243 836
Austin Before 27,580 11,440 901
Dallas After 38,234 14,796 1,168
Dallas Before 38,931 15,067 1,113
Houston After 27,337 10,091 890
Houston Before 27,796 11,083 704

Note. The table reports the overall number of queries, likes, and
matches in the Before period (from August 12 to August 18, 2020)
and the After period (from August 19 to August 25, 2020) of the field
experiment.

following models: (1) Myt =ap+Zi-y + Wy, - Z- 0 +
Emt and (2) Mmt =, t+ /\t + Wm . Zt ) + €mt, where (o
are market-specific fixed effects that account for the dif-
ferences between the treated and control markets, y (A;)
captures the potential trends affecting both treated and
control markets, and 0 is the parameter of interest,
which captures the treatment effect of the intervention.'”

In Table 3, we report the estimation results. The first col-
umn provides the results of the first model, whereas the
second column provides the results with the fixed effects
for each time period. We observe that the coefficient for
the variable of interest (Post X Treated) is positive and sig-
nificant in both models and that the estimated average
number of extra matches that our algorithm produced
in the treated market is 27.286. Comparing this value with
the estimated fixed effect corresponding to the Houston
market, we observe that our algorithm improved the

Table 3. First Field Experiment: Difference-in-Differences
Results

) @

Post -0.714 —
(7.611) —
Post X Treated 27.286™ 27.286™
(7.611) (9.147)
Austin 124.429* 120.000**
(4.129) (7.283)
Dallas 163.286™* 158.857***
(4.129) (7.283)
Houston 100.571* 96.143
(4.768) (7.607)
Observations 42 42
R? 0.296 0.596

Notes. The table reports the estimation results. Column (1) includes a
dummy for the periods after the start of the experiment, whereas
column (2) considers date fixed effects. Both columns include market
fixed effects. Significance is reported with asterisks.

w44 < 001,
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Table 4. First Field Experiment: Backlog and Nonbacklog Queries

Backlog Nonbacklog
Market Period Queries Likes Matches Queries Likes LR NB Shown Matches
Austin After 3,787 810 810 23,846 10,433 0.438 10,433 922 269
Austin Before 3,712 869 869 23,868 10,571 0.443 10,571 923 297
Dallas After 4,828 1,115 1,115 33,406 13,681 0.410 13,681 1477 452
Dallas Before 4,936 1,063 1,063 33,995 14,004 0.412 14,004 1,646 439
Houston After 3,942 839 839 23,395 9,252 0.395 9,252 1,946 436
Houston Before 2,929 682 682 24,867 10,401 0.418 10,401 954 267

Notes. The table shows the number of backlog and nonbacklog queries and the resulting number of likes and matches. LR stands for like rate;
NB stands for the new backlog generated within the corresponding period.

number of matches generated in that market by at least
27.13%.

To assess the robustness of our results, we per-
formed a placebo test excluding data from Houston
and assigning Austin to the treatment group. As the
results in the online appendix show, we find no signif-
icant effect in the variable of interest. We also esti-
mated our DID model for different subsets of data
(e.g., removing one control market at the time, remov-
ing the last day of the intervention to avoid the end of
horizon effects, and removing the first two days of the
intervention as these rely mostly on the backlog gen-
erated before the intervention) and obtained similar
results (see the online appendix). Finally, we com-
pared the improvement in Houston against that in all
other markets with at least 400 matches per week, and
we find that it more than doubles the second-largest
improvement (see the online appendix).

7.2.3. Discussion of the Sources of the Improvement.
Recall that there are two mechanisms by which matches
can be formed. The first mechanism is simultaneous shows
(i.e., both users see and like each other in the same
period). The second is sequentially through backlog
queries. That is, user i first sees and likes user j, and i is
added to j’s backlog; then, user i is shown to j, and if j
likes i, a match is automatically formed. From Table 4,
we observe that the vast majority of matches were
formed through the latter mechanism. Specifically, 839
of the 890 matches in Houston during the treatment
period were formed sequentially as a result of backlog
queries. Table 4 also shows that the number of backlog
queries in the Houston After period is significantly
larger than in the Houston Before period. This is not sur-
prising; as explained in Section 5, our algorithm favors
showing backlog profiles more than our partner’s algo-
rithm. However, this raises the following concern. Is
it the case that all the improvement comes from
“depleting” the existing backlogs that were generated
by our partner’s algorithm in the previous periods? If
the latter is true, the improvement achieved by DH may
not be sustainable in a longer time horizon.

To get a better understanding of what is driving the
improvement, in Table 4 we provide a picture of the
nonbacklog queries. We focus our discussion on
Houston. The total numbers of nonbacklog queries in
Houston in the Before and After periods are similar.
However, the like rate during the After period is sig-
nificantly lower. This is to be expected; as shown in
Section 6, our algorithm takes into account the proba-
bility that a match is formed (i.e., that both parties like
each other), whereas our partner’s algorithm is more
biased toward maximizing likes. In total, of the 23,395
nonbacklog queries during the After period, 9,252
were liked, resulting in 9,252 new additions to the
backlog compared with the 10,401 additions to the
backlog during the Before period. However, 1,946 of
these 9,252 new backlog queries were shown during
the After period, resulting in 436 matches. This
implies that 48.99% of the matches that were obtained
within the experiment window were a result of the
backlog generated by our own algorithm within that
same window. By contrast, 37.92% of the matches
obtained in the period Before were a result of the
backlog generated within that period. This shows that
our algorithm is obtaining matches not by depleting
the backlog previously generated but rather, by
exploiting the backlog generated by itself.

8. Conclusions

Motivated by our collaboration with a dating com-
pany, we study how matching platforms should
decide on the assortments to show to their users. To
accomplish this, we introduce a model of a dynamic
matching market mediated by a platform, where users
can repeatedly interact with the platform and must
like each other to generate a match. Using data from
our industry partner, we estimate the parameters of
the model. Using a novel identification strategy, we
find that matches in the recent past reduce the proba-
bility that a user likes other profiles. We propose a
family of algorithms to optimize the assortments
offered by the platform that leverage this finding.
We show through simulations that our algorithm
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considerably outperform relevant benchmarks; the
results of two field experiments confirm that the
improvements translate into our partner’s platform.

Overall, our results showcase the importance of
accounting for the effect that algorithmic decisions
have on user input and behavior in dynamic settings
and on how this impacts decisions in future periods.
Our problem presents one specific setting where
accounting for such an effect with a simple one-period
look-ahead policy leads to at least a 5% improvement.
Moreover, the results from the field experiment also
provide additional evidence of the good performance
of the one-period look-ahead policies in practice.
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Endnotes

" We keep the name of our industry partner undisclosed as per the
terms of our NDA.

2 This is in contrast to other classic problems in operations manage-
ment, including auction design (Elmaghraby and Katok 2019), pro-
curement (Engelbrecht-Wiggans and Katok 2006, Beer et al. 2021),
and pricing (Katok et al. 2014, Ozer and Zheng 2016). See part Il in
Donohue et al. (2019) for an overview of applications of behavioral
operations.

3 For simplicity, we focus on the cases where users can either like or
not like a profile, ruling out the skip option that is part of our part-
ner’s platform. This is without loss of generality, as less than 5% of
profiles were skipped whenever there was at least one evaluation
(like or not like) in the assortment.

4 By opening the notification, users can directly see their new match
and start a conversation. Moreover, the app allows users to directly
access their matches and conversations without observing the newly
selected profiles.

5 To capture our industry partner’s problem and simplify exposi-
tion, we focus on a short time horizon throughout the paper. As a
result, we make several assumptions that are reasonable in this con-
text but that would not hold if we focused on the long run: for
example, the fact that the set of users is fixed or that log-in probabil-
ities do not depend on the history. The short-term assumption is
standard in the literature, and it is consistent with our empirical
analysis in Section 4, the algorithm introduced in Section 5, and our
industry partner’s objective.

8 However, our empirical analysis shows that the current definition
is the most relevant measure, as it is the only measure that has a
statistically significant effect of a meaningful magnitude.

7 One may also conjecture that the utility user i gets from being
matched with user j can depend on the other users who are shown
together with j in the assortment. We empirically tested this and
found a negative and significant effect of the average attractiveness
of the other profiles in the assortment on the like probabilities.
However, the magnitude of this effect is very small and crucially,
considerably smaller than that of the history effect, and so, we
decided to focus on the latter.

8 However, one can readily observe that our problem suffers from
the so-called “curse of dimensionality.” Moreover, consider the

following decision-theoretic formulation of our problem. Given a
number of matches M, are there assortments that result in an
expected number of M or more matches for Problem (2)? Using a
reduction from the exact cover problem, we establish in the online
appendix that the aforementioned problem is NP complete.

9 We do not have enough data to estimate a model for users who
declared other preferences or to estimate different models for the
two sides separately, and thus, we pool the data and control for
gender differences.

10 As we discuss later in the section, the short window also allows
us to guarantee that the treated users are not able to tell that their
additional matches are with an inactive user.

11 As robustness checks, we conduct the estimation using two alter-
native specifications: without propensity score weighting and on a
matched sample based on the estimated propensity scores. The
results are similar and are omitted because of lack of space. Note
that the propensity score weighting is not necessary, but we include
it to provide a fairer comparison between the treated and control
groups.

12 We tested the performance of other rounding rules in simula-
tions; the results are omitted for the sake of space.

13 In the online appendix, we show that these differences remain for
different values of the history effect and that similar results are
obtained in other markets.

14 Alternatively, one could use the like probabilities obtained from
estimating a model without the history effect. We note here that
both the estimated coefficients and the predictive power of such
probabilities when there are no matches since the last session are
very similar to those of %(O).

1% Running the experiment at the user level in our matching market
setting would lead to interference for reasons similar to those
explained in Section 4.1.2. Suppose that we apply our algorithm to a
randomly selected treatment group of users and keep the default
algorithm provided by the platform for the users in the control
group. As the potentials of the treated users may contain control
users, the selection of assortments by our algorithm also affects the
potentials and backlogs of those users in the control group.

18 The results in the online appendix show that there is a significant
effect of the day of the week on the log-in probabilities, which
implies that these probabilities are time dependent. Moreover, we
find that the effect of the match history on the log-in probabilities is
either negative or statistically insignificant. Our result assumes that
vl is exogenous (i.e., the history effect is estimated by conditioning
on the log-in probabilities). If the effect of the match history on the
log-in probabilities is negative, our result provides a lower bound
on the size of the history effect. Our field experiment results pro-
vide additional validation of this assumption.

17 To validate the DID approach, in the online appendix we show that
there are no significant differences in the trends before the interven-
tion, proving that the parallel-trends assumption holds in our setting.
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